
 Getting Started Guide
 - duinoPRO UNO -

Figure 1. duinoPRO UNO baseboard - 3D render (front)

Installing duinoPRO support in the Arduino™ IDE
Follow the instructions at https://github.com/duinoPRO/install/blob/master/
README.md to install support for duinoPRO in your Arduino™ IDE or install the
Arduino™ IDE from scratch.

Setting up the hardware
Mounting modules
duinoPRO is built on the concept of using modules that can be mounted on a
baseboard in multiple ways depending on how you plan to use the hardware.

During development, test or while playing with duinoPRO, it is useful to be able to
the move modules around between module spaces. To do this, you can solder
standard 0.1” sockets onto module spaces on your baseboard and standard 0.1”
header onto your modules.

Once you are ready for your duinoPRO design to become more permanent it is
possible to solder modules into place directly on your baseboard. The duinoPRO
baseboard has snap-out “mouse bites” on all module spaces. For modules
featuring a through-hole connector, you will need to snap these out in order to
solder the module into place.

J9 connector (VBAT)

https://github.com/duinoPRO/install/blob/master/README.md

Serial modules � - Module space 7
The duinoPRO UNO microprocessor has a single serial port that is shared between
the USB port and the Module 7 space. Modules requiring a serial port connection
are identified by the serial port symbol,� ,printed on the bottom side. On the
duinoPRO UNO baseboard, these can only be fitted to the Module 7 space (also
marked with the serial port symbol, �). Make sure that you fit any modules
requiring a serial connection to Module 7 on your duinoPRO UNO baseboard,
especially if you are soldering them permanently into place!

Powering the baseboard
The duinoPRO UNO baseboard can be powered in a number of different ways.
- via the micro USB port (also used for programming)
- via the DC barrel connector (input must be between 5 and 15V and supply

enough current to power the modules you have chosen)
- via the J9 battery connector (VBAT signal) (input must be between 3 and 15V

and supply enough current to power the modules you have chosen)
- via a yellow duinoPRO power module e.g. a Coin Cell module (VBAT signal)

Programming the baseboard
To program your duinoPRO UNO baseboard, connect your computer to the
baseboard using a micro USB cable. Select duinoPRO UNO from the drop-down
menu under Tools | Board in the Arduino™ IDE, and the USB port that your board is
plugged in on from the Tools | Port drop-down menu. To upload a sketch to the
board, click on the forward arrow button, � , in the IDE menu. For those already
experienced with Arduino™, this should all be very familiar.

Accessing Baseboard Facilities
Before starting on specific modules, the duinoPRO UNO baseboard contains a
small number of shared facilities that you may wish to access from your sketch.
These include:
- the ability to measure battery voltage
- a baseboard “ON” LED to indicate that the board is powered
- serial port control

To use these facilities, you need to include the duinoPRO header file and declare
an object of type duinoPRO at the top of your sketch:

 #include <duinoPRO.h>

 duinoPRO myBaseboard;

Baseboard “ON” LED
To control the baseboard LED:

 myBaseboard.setLed(true); // Turns the LED on
 myBaseboard.setLed(false); // Turns the LED off

Note that turning the baseboard “ON” LED off lowers the power consumption of the
baseboard.

Measuring Battery Voltage
VBAT is a signal on the baseboard and on all of the module spaces. If the board is
powered from VBAT via a yellow power supply module such as the duinoPRO Coin
Cell Module or directly via the baseboard connector J9 (marked in figure 1 above,
and not fitted by default), the voltage level of this signal can be measured in
software for battery monitoring purposes.

Measuring battery voltage is a two step process. First the battery sense circuit
needs to be enabled, using the enableVbatSense() method. Then the battery
voltage can be read using getVbat(). Optionally the battery sense circuit can be
disabled again using disableVbatSense(). This may be desirable as disabling
the battery voltage measurement lowers the power consumption of the baseboard.

For example:

 float myBattVoltage;

 myBaseboard.enableVbatSense();
 myBattVoltage = myBaseboard.getVbat();
 myBaseboard.disableVbatSense();

Serial Port Control
As explained above, the duinoPRO UNO microprocessor has a single serial port
that is shared between the USB port and the Module 7 space. The serial port is
used, when a sketch is running, either:

a) For sending messages over the USB port (useful for debugging), or
b) For communicating with a module that requires a serial port connection (e.g.

RS232, Bluetooth LE, Sigfox). Modules requiring a serial port connection are
identified by the serial port symbol,� ,printed on the bottom side. On the
duinoPRO UNO baseboard, these can only be fitted to the Module 7 space
(also marked with the serial port symbol, �).

The following code snippet shows how to switch the duinoPRO UNO's serial port
between these two modes:

 myBaseboard.serialDebugMode(); // Puts serial port into
 debug mode (a) above)
 myBaseboard.serialModuleMode(); // Puts serial port into
 module mode (b) above)

Note that when a sketch starts up, the duinoPRO UNO serial port is by default
connected to the USB port for debug.

Remember to add the command Serial.begin(baud_rate); to the setup()
function in your sketch as per regular Arduino™ requirements, where baud_rate is
your chosen serial baud rate. See Arduino™ instructions for more details: https://
www.arduino.cc/en/Reference/Serial.

You can use Serial.print() to test writing debug messages to the serial monitor
accessible at Tools | Serial Monitor in the Arduino™ IDE.

Modules
Adding module support
To add support for a particular type of module to your sketch, include the relevant
library under Sketch | Include Library in the Arduino™ IDE. The required header file
should appear at the top of your sketch.

Declaring modules
At the start of a sketch, all hardware modules that you wish to access on your
duinoPRO baseboard need to be declared. This declaration takes a single
parameter, which is the location of the module on the baseboard. Module locations
are marked on the baseboard e.g. “Module 1”, “Module 2” etc.

For example:

 dP_LedButton myLedButton(2); // LED/Button Module in
 space 2
 dP_MicroSD mySdCard(3); // Micro SD Module in
 space 3
 dP_LedButton myLedButton2(4); // 2nd LED/Button Module
 in space 4

Note that it is often possible to have more than one module of the same type fitted
to a baseboard.

Note that this differs from Arduino™ - typically libraries for Arduino™ shields do not
require the user to declare them explicitly in the sketch. The library handles this for
you. duinoPRO differs in this regard for two reasons. Firstly, the software needs to

https://www.arduino.cc/en/Reference/Serial

know the location of the module. Secondly, this allows for simple implementation
when an application requires more than one module of the same type, something
which is not usually possible with a shield arrangement.

Initialising modules
As per Arduino™ convention, duinoPRO module classes have a begin() method
which must be called in the setup() function. The begin() methods for different
modules take different arguments. Some may take no arguments at all. See the
header file for the relevant module for more information.

Reading and writing pins
The interface between the duinoPRO baseboard and each module includes 6
general purpose input/output (GPIO) signals that can be directly controlled from the
sketch (see figure 2 at the end of this guide for the module interface definition). For
most types of modules, these are used for specific purposes related to the module,
and are controlled from within the library, so the user doesn't need to control them
directly.

If you want to read and write pins directly, for example to control or sense external
hardware, typically from a hardware perspective you would do this through a
hardware breakout module (e.g. the IO Breakout module).

Or you may want to read and write pins directly because you're writing or modifying
a module library, or even because you've just wired something directly to the
baseboard. The code you need is the same in all cases.

Firstly, as always, you need to include the relevant library and declare the module
and tell the software where it is.

For example:

 #include <dP_Module.h>

 dP_Module myModule(2);

Once a module is declared, its pins can be accessed using the module name and
pin number. For example, to read pin 3 of a module declared immediately above,
you would write:

myModule.pin(3).read();

Rather than referring to a pin as pin(3), it can be preferable to give pins a
recognisable name. This is done using the following code (note that you need to
include dP_Module.h to access the dP_Pin class):

dP_Pin myPin = myModule.pin(3);
Then, to read the pin, you would write:

myPin.read();

Note that if you want your dP_Pin object to be accessible from within both the
setup() and loop() functions, you will need to ensure that it is in scope by
declaring it above setup().

Note that the pins on any module type can be accessed like this. For most types of
modules, however, you would not directly access GPIO pins, but use the methods
specific to that module type. You may however want to access pins directly if you're
adding extra functionality to the module's library (or writing a library from scratch, of
course).

Setting Pin Direction
The direction of a pin (input or output) is set using the mode() method, e.g.:

 myPin.mode(OUTPUT); // sets myPin as an output
 myOtherPin.mode(INPUT); // sets myOtherPin as an input

How this differs from Arduino™ - Arduino™ allow inputs to optionally be pulled
up. This is not available on duinoPRO UNO although it is likely to be available on
future baseboards.

Reading and Writing to/from a Pin
Once a pin has been configured as an output, it can be written as follows:

 myPin.write(HIGH); // sets myPin high
 myPin.write(LOW); // sets myPin low

Similarly, an input pin can be read as follows:

 bool readValue;
 readValue = myOtherPin.read();

How this differs from Arduino™ - The syntax here is different from Arduino™.
read(), write() and mode() here are methods on the dP_Pin class, whereas for
Arduino™ the equivalent functions are digitalRead(), digitalWrite() and
pinMode(). Note that these are functions rather than methods and take the pin as
an argument instead. For consistency with the rest of the API, duinoPRO uses
methods.

Writing your first sketch
As an example, let's write a sketch that uses a duinoPRO LED/Button module, and
implements a simple program that controls an LED using a button.

Steps:
1. Include the libraries related to your modules using Sketch | Include Libraries

from the Arduino™ IDE menu bar. Also include duinoPRO.h if you need
it, which is often the case.

2. Declare the modules that you're using.
3. Typically modules require a call to a begin() method. Add this to the

setup() function in your sketch.
4. Write your application. In this case:

#include <dP_LedButton.h>

//declare duinoPRO LED/Button module instance (module mounted in
space 2)
dP_LedButton myLedButton(2);

void setup() {
 // put your setup code here, to run once:
 myLedButton.begin();
}

void loop() {
 // put your main code here, to run repeatedly:
 // read button 1
 if (myLedButton.readButton(1))
 {
 //if button 1 set, set LED 1 to green
 myLedButton.setLed(1, dP_LedButton::GREEN);
 }
 else
 {
 //else, turn LED 1 off
 myLedButton.setLed(1, dP_LedButton::OFF);
 }
}

Note that a modified version of this example sketch can be found at
https://github.com/duinoPRO/firmware/blob/master/libraries/dP_LedButton/

examples/LedButton-Button/LedButton-Button.ino.

https://github.com/duinoPRO/firmware/blob/master/libraries/dP_LedButton/examples/LedButton-Button/LedButton-Button.ino

3V
3

SPI CS

SC
L1

GPIO 5/USART TX

SD
A1

M
IS

O

M
O

SI

SC
K

(S
PI

)

EXTIO2 ADDRESS 3

ADDRESS 2

ADDRESS 1

GND

GPIO 1/INT

SCL2

MCU RESET

SDA2

VB
AT

GPIO 2/USART CTS

G
N

D

RESERVED

G
PI

O
 6

/U
SA

RT
 S

CK

ADDRESS 0

GPIO 4/USART RX

GPIO 3/USART RTS

EXTIO4

EXTIO3

EXTIO1

GND

Figure 2. duinoPRO module interface definition

