

1
Cover page image kindly provided by Visual Hunt [1]

Energy Management in Low

Power Wireless Sensor Networks

Final Design

1
Cover page image kindly provided by Visual Hunt [1]

Energy Management in Low
Power Wireless Sensor Networks

Team 14

Authors
Peter Bouvy (21299044)

Yung Ren Chin (21247413)
Aaron Hurst (21325887)

Khanh Tan (Jamie) Phan (21326604)
Matthew Ramanah (21317297)

Jake Sacino (21132001)
Andy Ta (21317377)

Final Design

Project Partner:

Mr Mark Callaghan, ATAMO

Supervisor:
Mr Marcus Pham

Unit Coordinator:

Dr Sally Male

Group Meeting Day and Time:
Thursday 4pm

Word Count:
????

Word Limit:

24,500

The team agrees to share the presentation time and all members agree to receive the same
presentation mark if the opportunity to demonstrate capabilities is deemed uneven by the

assessors.

Version 5.1

[1]

 I

Revision History

Date Version
2 Description Author

29/09/2017 1.0 Creation of initial template Jake Sacino

30/09/2017 1.1 Added Introduction; Added preface to Requirements section Jake Sacino

04/10/2017 1.2 Added Sensor-Host introduction Jamie Phan

21/10/2017 1.3 Stakeholder Engagement Aaron Hurst

22/10/2017 1.4 Front-End portion of Abstract Andy Ta

22/10/2017 1.5 Finish Abstract, Design Philosophy, Join Implementation Matthew Ramanah

23/10/2017 1.6 Updated Network Manager Sections Peter Bouvy

23/10/2017 2.0 Added 5.2.6: Sample – Packet Payload Formation Aaron Hurst

24/10/2017 2.1 Updated Hardware Design Sections & System Cost Yung Chin

25/10/2017 2.2 Updated Cloud Database Sections & Design Outputs Andy Ta

26/10/2017 2.3 Added Eterna Flash section Jamie Phan

26/10/2017 3.0 Added Interface Design section Jake Sacino

26/10/2017 3.1 Added Power Supply Design Jamie Phan

26/10/2017 3.2 Added Crystal Configuration Jamie Phan

27/10/2017 4.2
Added Risks & Contingencies section; updated Structure &

Contributions
Jake Sacino

27/10/2017 4.3
Updated Data Acquisition, Sensor Configuration and Mote

Configuration sections
Aaron Hurst

27/10/2017 5.0 Added Testing section Aaron Hurst

27/10/2017 5.1 Report editing Aaron Hurst

2
Incrementing the version by 0.1 denotes a minor change; incrementing by 1.0 denotes a significant change

 II

Abstract

Wireless sensor networks (WSN) are often used to monitor a wide range of physical and environmental conditions

such as temperature, pressure or flow [2]. A WSN system consists of several spatially distributed sensors, each

forming a single node in the network. Nodes are able to communicate with each other through a complex mesh to a

gateway, providing bi-directional wireless connectivity over a short distance [3].

Power management is one of the major challenges facing wireless sensor networks [4]. Cloud Seven Consulting

(CSC) have integrated a third party WSN with an ATAMO Arduino-based development platform, periodically

reporting sensor readings to a cloud database which is accessible through a graphical user interface. Whilst

functional communication between each component of the project is the main driver of the design, further emphasis

has been placed on the WSN power management system to prolong the battery life of the sensors.

CSC utilised a duinoPRO board to drive the sensors and frame the payload appropriately, minimising the sensor

battery drain. A Dusty module was then used to send the payload to the mesh network. A duinoPRO, Dusty module

and sensor together form a single node in the network, also known as a mote. Communication within the mote was

achieved using the universal asynchronous receiver-transmitter (UART) protocol.

Communication between motes, the gateway and the database was achieved by leveraging the SmartMesh Internet

Protocol (IP) [5]. Dynamic power management was implemented through a complex scheduling routine in parallel

with the regular operation of the mote, further enabling CSC to maintain tight constraints on battery energy usage.

All routines within the mote were designed using standard Arduino libraries and available duinoPRO libraries in

accordance with the relevant application programming interface (API).

CSC integrated a cloud-database in conjunction with a web application to visualise and store data from various

motes. Utilising Amazon Web Services, Django and Python, CSC has developed a system with end-to-end

functionality for proof of concept. Facilitating for remote monitoring, the premise of the cloud-database is to store

data on a multi-user accessible platform. Creating a medium for remote data analytics and cost-effective data sharing

methods.

In piping the data from the network manager to the cloud-database, it has created opportunity for CSC to deliver a

cloud integrated web application. With a deep consideration for time-series data, CSC has developed a user-interface

which displays multiple motes in a simplistic and intuitive manner. These additions have enabled CSC to achieve a

final outcome displaying data in near real time whilst extending the battery lifetime of a wireless sensor network.

 III

Contents

1 Introduction .. 1

1.1 Overview ... 1

1.2 Purpose .. 1

1.3 Structure & Contributions .. 1

1.4 Definitions, Acronyms, and Abbreviations.. 3

2 Requirements & Constraints .. 4

2.1 Mandatory Design Requirements Matrix ... 4

2.2 Aspirational Design Requirements Matrix .. 6

2.3 Project Constraints ... 8

3 System Architecture ... 9

3.1 System Transactions .. 11

3.2 System-Wide Payload Standard ... 13

3.3 Summary .. 15

3.3.1 Design Philosophy ... 15

3.3.2 Final Design Elements ... 15

4 Stakeholder Engagement ... 16

4.1 Design Review Actions ... 21

5 Design Decisions ... 22

5.1 Hardware Design ... 24

5.1.1 PCB Layout ... 24

5.1.2 Power Supply Design... 24

5.1.3 Cost Analysis of PCB Fabrication ... 24

5.2 Embedded Design: Sensor-Host .. 27

5.2.1 Dusty Eterna Flash ... 28

5.2.2 Dusty Crystal Configuration .. 30

5.2.3 DuinoPro-to-Dusty Interface ... 32

5.2.3.1 Timing.. 32

5.2.3.2 Endianness ... 34

5.2.3.3 Interface Limits .. 34

5.2.4 Embedded Application Architecture .. 35

5.2.5 DuinoPRO State Management ... 36

5.2.6 Power Consumption & Management ... 38

 IV

5.2.7 Sleep Management ... 41

5.2.8 Main Mote Routine .. 43

5.2.8.1 Start-Up Mode ... 43

5.2.8.2 Scheduling Mode ... 43

5.2.8.3 Sampling Mode .. 44

5.2.9 Mote Join Routine .. 44

5.2.9.1 Duty Cycle Management ... 44

5.2.9.2 Synchronisation ... 45

5.2.9.3 Message Exchange ... 45

5.2.10 Sample – Payload Formation ... 46

5.2.10.1 Sample function ... 48

5.2.10.2 Data sampling .. 50

5.2.10.3 Framing .. 52

5.2.11 Data Acquisition .. 54

5.2.11.1 Timestamp ... 54

5.2.11.2 duinoPRO Battery .. 54

5.2.11.3 Sensor .. 54

5.2.12 Sensor Configuration ... 58

5.2.13 Mote Configuration.. 60

5.2.13.1 Configuration State Variables .. 60

5.2.13.2 Configuration Lookup Table .. 60

5.2.13.3 Configuration Set ... 61

5.2.13.4 Configuration Parameter Set .. 63

5.2.13.5 Other Configuration Functions .. 64

5.2.14 Network Manager and Gateway .. 65

5.2.14.1 Embedded Network Manager .. 65

5.2.14.2 Gateway Application ... 65

5.2.14.3 Upload Mote Data Routine .. 66

5.2.14.4 Update Configuration Routine ... 68

5.3 Front-End Design... 69

5.3.1 Cloud Integration ... 69

5.3.2 Choice of Cloud Service Provider ... 69

5.3.3 Choice of Database .. 70

5.3.4 Database Design .. 71

5.3.5 Web Application Framework ... 74

5.3.6 Interface Design ... 75

5.3.7 Deployment.. 81

 V

6 Testing ... 83

6.1 Unit Tests ... 83

6.2 Integration Testing ... 84

6.3 System testing .. 85

6.4 Testing Summary ... 86

7 Resources .. 87

7.1 Hardware ... 87

7.2 Network ... 87

7.3 Front End ... 87

8 Risks & Contingencies ... 88

9 Design Outputs ... 91

10 System Cost ... 92

11 Conclusion... 93

12 References ... 94

13 Appendices .. 97

13.1 Appendix A – Yet to be added ... 97

13.2 Appendix B – IoTeam Dusty Net List ... 98

13.3 Appendix C – Timesheet of CSC... 105

 VI

List of Figures

Figure 1: Transactions between system end-points ... 9

Figure 2: System architecture showing key sub-systems and interfaces ... 9

Figure 3: Data & Diagnostic Transaction .. 11

Figure 4: Configuration Transaction.. 12

Figure 5: Update Transaction .. 12

Figure 6: Payload structure and evolution from process variables. ... 13

Figure 7: Dataload reading procedure ... 14

Figure 8: Interposer Dusty PCB .. 24

Figure 9: PCB Cost Per Unit Produced ... 26

Figure 10: Functional block-diagram of Sensor-Host with payload .. 27

Figure 11: Eterna flash image and components ... 28

Figure 12: Distribution of optimal load trim values for crystal calibration over 98 samples 30

Figure 13: Frequency characterisation from LTC5800 radio generated from the 20 MHz reference 31

Figure 14: API UART pin mapping between duinoPRO and Dusty Module .. 32

Figure 15: Timing diagram for duinoPRO to Dusty UART communication .. 33

Figure 16: Timing diagram for Dusty to duinoPRO UART communication .. 33

Figure 17: Ripple at high UART baud rates .. 34

Figure 18: State control and transitions. .. 37

Figure 19: Sweep over frequency and network size to determine power consumption of Dusty module 39

Figure 20: Power consumption of Dusty module during packet transmission .. 40

Figure 21: Power consumption of Dusty module during packet reception .. 40

Figure 22: Power consumption of Dusty module during idle listening ... 40

Figure 23: Sensor-host core routine with periodic sleep.. 41

Figure 24: Mote Main Routine Logic .. 43

Figure 25: Mote Join Routine Logic .. 44

Figure 26: Layered approach to sampling ... 47

Figure 27: Sample function flowchart ... 49

Figure 28: Data sampling functions general structure ... 51

Figure 29: reserve_field function flowchart .. 53

Figure 30: pack_field_header function flowchart .. 53

Figure 31: Layered approach to sensor data reading ... 55

Figure 32: sensor_read function .. 56

Figure 33: sensor_config subroutine.. 59

Figure 34: Configuration functions interactions .. 60

Figure 35: config_set function ... 62

file:///C:/Users/Aaron%20Hurst/Documents/2017%20UWA/02%20Sem-2/ELEC5552/11%20Final%20Report/ELEC5552%20Team%2014%20Final%20Design%2020171027%20V5.docx%23_Toc496883060
file:///C:/Users/Aaron%20Hurst/Documents/2017%20UWA/02%20Sem-2/ELEC5552/11%20Final%20Report/ELEC5552%20Team%2014%20Final%20Design%2020171027%20V5.docx%23_Toc496883061

 VII

Figure 36: config_param_set function ... 63

Figure 37: Gateway Logic Diagram .. 66

Figure 38: Process and Upload Mote Data .. 67

Figure 39: Update Configuration Routine ... 68

Figure 40: Front-End Intrasystem Integration ... 69

Figure 41: Composite Keys ... 72

Figure 42: Sensor Data Table Repository .. 73

Figure 43: Configuration Data Table Repository .. 74

Figure 44: Login Screen .. 76

Figure 45: Login Screen Error Message .. 77

Figure 46: Web Application Post-Login Screen .. 77

Figure 47: Range Slider Illustration: Initial Selection ... 78

Figure 48: Range Slider Illustration: Altering displayed data ... 78

Figure 49: Legend Notification ... 79

Figure 50: Legend illustration - Both Motes selected .. 79

Figure 51: Legend illustration - Single Mote selected ... 80

Figure 52: Graph Toolbar .. 80

Figure 53: Set Zoom Illustration - Click and drag ... 80

Figure 54: Set Zoom Illustration - Result .. 81

Figure 55: Toggle Spikes Enabled ... 81

 VIII

List of Tables

Table 1: CSC's Individual Contributions ... 1

Table 2: Mandatory Requirements .. 4

Table 3: Aspirational Requirements .. 6

Table 4: Project Constraints... 8

Table 5: Final Design Elements ... 15

Table 6: Stakeholder Engagement Activities ... 16

Table 7: Design Review Actions ... 21

Table 8: Summary of Design Decisions .. 22

Table 9: Cost of PCB fabrication ... 25

Table 10: PCB Cost and Quantity ... 25

Table 11: Eterna flash components description ... 28

Table 12: Non-General Purpose Pin Configuration ... 29

Table 13: Eterna 20MHz Crystal Configuration as in Eterna Flash .. 30

Table 14: System states and variables. .. 36

Table 15: Variables used for scheduling. ... 41

Table 16: Sampling mode options ... 46

Table 17: Data sampling functions .. 50

Table 18: Framing layer functions ... 52

Table 19: Field header length indication ... 52

Table 20: Field header type indication .. 53

Table 21: CSP Weighted Decision Matrix .. 70

Table 22: Database Weighted Decision Matrix ... 71

Table 23: WAF Weighted Decision Matrix ... 75

Table 24: Unit Tests Summary .. 83

Table 25: Integration Tests Summary .. 84

Table 26: Integration Test Plan .. 84

Table 27: Development & Testing Summary .. 86

Table 28: Risk Ranking Matrix ... 88

Table 29: Risk Rank Defined .. 88

Table 30: Risk Register Part 1 ... 89

Table 31: Risk Register Part 2 ... 90

Table 32: System Cost ... 92

file:///C:/Users/Aaron%20Hurst/Documents/2017%20UWA/02%20Sem-2/ELEC5552/11%20Final%20Report/ELEC5552%20Team%2014%20Final%20Design%2020171027%20V5.docx%23_Toc496883116
file:///C:/Users/Aaron%20Hurst/Documents/2017%20UWA/02%20Sem-2/ELEC5552/11%20Final%20Report/ELEC5552%20Team%2014%20Final%20Design%2020171027%20V5.docx%23_Toc496883117

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 1

1 Introduction
The proliferation of data monitoring technologies has enabled multifarious insights into environmental conditions,

system reliability, consumer behaviour, and a myriad of other fields and industries [6, 7, 8]. Sensors are one such

technology, able to detect events or changes in their environment and send this information to other electronics.

Energy storage poses a constraint on sensor operation in rural environments; a lack of grid connectivity exposes the

importance of sagacious energy management.

1.1 Overview
Cloud Seven Consultants (CSC) has been contracted by ATAMO (the client) to investigate energy management in

low-power wireless sensor networks (WSN). The project requires integration of a third party WSN with an ATAMO

Arduino based development platform. Sensor data (e.g. temperature, vibration) must be measured and periodically

reported over the wireless network to a cloud-based database. The firmware in the sensor must provide for reliable

communications while keeping tight constraints on energy usage. This information must be accessible on the web

via a graphical user interface (GUI).

1.2 Purpose
The purpose of this document is to outline CSC’s final design. CSC has ascertained the proceeding information

through salient stakeholder communications and consolidation of literature pertinent to the undertaking of a design

project in the field of energy management in low-power WSNs.

1.3 Structure & Contributions
CSC has identified three core sub-systems within the WSN – Hardware, Kernel and Front-End – as recommended

by the client [9]. Individual sub-teams have been assigned to each core sub-system. The Hardware team is tasked

with designing and fabricating the interposer printed circuit board (PCB) for the duinoPRO-Dusty module. The

Kernel team is tasked with developing the firmware, communication packet structure for sensor motes and

optimising battery usage. The Front-End team is tasked with data visualisation via the integration of cloud services.

The breakdown of the various sub-teams is illustrated in Table 1.

Table 1: CSC's Individual Contributions

Contributor Sub-team Content

Yung Hardware Hardware Design, Sensor-Host Interface, & Dusty

Configuration

Aaron Kernel Sampling, Sensor Driver & Configuration

Jamie Kernel System Integration, State, Power & Sleep Management

Matt Kernel Mesh Network Integration and Main Routine

Peter Kernel Network Manager/Gateway

Andy Front-End Cloud Integration

Jake Front-End Graphical User Interface

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 2

The structure of the report has been listed below, with the team member(s) responsible for writing the section

denoted in square brackets. This report has been broken down as follows:

❖ Section 1 introduces the project and document structure [Jake];

❖ Section 2 will give the final project requirements & constraints [Aaron & Jake];

❖ Section 3 will summarise the system architecture [Jamie];

❖ Section 4 will outline stakeholder engagement [Aaron];

❖ Section 5 will detail the final design decisions;

• Section 5.1 will outline design decisions pertinent to the Hardware design [Jamie & Yung];

• Section 5.2 will outline design decisions pertinent to the Embedded design [Aaron, Jamie, Matt, &

Peter];

• Section 5.3 will outline design decisions pertinent to the Front-End design [Andy & Jake];

❖ Section 6 will outline the testing performed on the design [Aaron];

❖ Section 7 will outline the project resources [Andy];

❖ Section 8 will outline the identification and management of safety issues, risks and contingencies [Jake];

❖ Section 9 will detail the design outputs [Andy];

❖ Section 10 will finalise and consolidate the project costs [Yung];

❖ Section 11 will summarise and conclude the report [Matthew];

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 3

1.4 Definitions, Acronyms, and Abbreviations

AP Access Point

API Application Programmers Interface

AWS Amazon Web Services

BAU Business as Usual

CSC Cloud Seven Consultants

CSP Cloud Service Provider

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HTTP HyperText Transfer Protocol

IBM International Business Machine

I/O Input/Output

IP Internet Protocol

ISR Interrupt Service Routine

LUT Lookup Table

LSB Least Significant Bit

MSB Lost Significant Bit

NRDBMS Non-Relational Database Management System

OTAP Over-the-air-Programming

PCB Printed Circuit Board

RDBMS Relational Database Management System

TCP Transmission Control Protocol

The Client ATAMO

UART Universal Asynchronous Receiver/Transmitter

WAF Web Application Framework

WSN Wireless Sensor Network

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 4

2 Requirements & Constraints
CSC has segregated the project requirements under two headings – Mandatory and Aspirational. Mandatory

requirements must be accomplished for the project to be considered a success. In this regard, there are no trade-offs

between the mandatory requirements, being the baseline level of quality defined by the client. Upon realizing all

mandatory requirements, CSC will pursue the delivery of additional Aspirational requirements to further client

satisfaction. These requirements have either been directly spoken as desirable additional features/functionality, or

have been identified by CSC as exciter requirements. These aspirational requirements pursue a more optimised

system, and have inherent trade-offs due to time restrictions imposed on CSC.

2.1 Mandatory Design Requirements Matrix
The mandatory requirements have been reviewed and verified by the client through email communication [10]. The

following mandatory requirements in Table 2 span across expected, spoken, and unspoken requirements.

Table 2: Mandatory Requirements

ID Requirements Business Need(s)

M01 Functional Operating Conditions

- Operational ambient temperature: -40 to 70°C

- Fully IP rated (IP68 or above)

- Input Battery Voltage 3.0 to 3.6 V

- Humidity: 10-90%

Continual system functionality in

expected operating environment

M02 Safety:

- The system must be safe to operate, install, and maintain with

necessary precautions taken to ensure the system will not

cause injury or damage.

Reduce danger to human life to as

low as reasonably practicable

M03 Design strategy:

- A clear and defined strategy for implementation of the system

must be provided.

Ease of implementation,

maintenance and enhancement

M04 Operational Lifetime:

- Sensor devices will operate for no less than 1 year for every

1000 mAh of battery capacity supplied.

Affordability of deploying large

numbers of sensors and

instrumentation

M05 System Network:

- The system must be capable of receiving data remotely from at

least 3 sensor devices, with each device separated by a

maximum of 50m in open air

- The sensor hosts must be discoverable and able to synchronise

to the WSN given they are within 50 m (in open air) of another

SmartMesh-IP enabled host (sensor host or network manager).

Provides additional data points to

alleviate domain-based errors

Automates the process of data

procurement

M06 Internet Connectivity:

- The system must be capable of sending sensor data to a cloud-

based database system from an internet-enabled gateway.

Continual data access

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 5

M07 Data validity:

- Sensor data that is sent through the network (from sensor to

gateway) must be valid, such that errors can be detected and

stopped before transmission.

Reliable data integrity

M08 Data Specification:

- Data that is transmitted from each host must contain the

timestamp of the sensor data, the source of the sensor data, and

the sensor data itself

- Sensor data shall be obtained at maximum available precision,

up to 16 bits. Hence, all sensor data transmissions shall allow

for up to 16 bits of data.

Provides value where the time

and location of sensor data is of

practical significance

M09 Data currency and timeliness:

- The user must be able to view current data from the sensors

from an internet-enabled gateway with a maximum of a two

(2) minute delay

Provides near real-time access to

monitored data

M10 Client Application:

- A clear and relevant user interface that can access and interpret

the cloud-based database must be provided for demonstration

purposes.

Provide convenient and coherent

access to monitored data

M11 Portability:

- Capable of adapting any sensor module that is designed to the

ATAMO duinoPRO specification.

Provide cross-functionality across

a wide range of end-uses

M12 Hardware Interface

- Interface between dusty module and duinoPRO must conform

to ATAMO’s standard protocol

Provide cross-functionality across

a wide range of end-uses

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 6

2.2 Aspirational Design Requirements Matrix

The client has reviewed the draft of the aspirational requirements in the meeting on 24/08/2017 [11] and dictated a

priority rating from 1 to 5 (with 1 being of lowest importance and 5 being of highest importance). The client has

verified the ranking of these requirements; the numerical priorities given by the client are listed in the column

“Client Priority” (Table 3). CSC has bolstered this priority with a ‘Ranking’ column, which orders the aspirational

requirements in descending order. Hence a ‘Ranking’ of one is the most important, being prioritised over all

proceeding aspirational requirements.

Table 3: Aspirational Requirements

ID Ranking Requirements Business Need(s)
Client

Priority

A01 1 Data Specification:

- In addition to sensor data of at least 16-bit

resolution, diagnostic data of 16-bit resolution

should be transmitted through the network

Provide critical data on

the current condition of

the system

Accommodate planned

downtime and potential

maintenance strategies

5

A02 2 System Network:

- The system will be capable of receiving data

remotely from at least 5 sensor devices, with

each device separated by a maximum of 50m in

open air

Increased network

capacity enables

improved data resolution

across the monitored site

5

A03 3 Configuration Flexibility

- The system design will allow for each mote to

have and receive different configurations from

the network manager. Configuration

parameters will include, but are not limited to,

sensor sampling interval and diagnostic data

sampling interval.

Ability to flexibly

dispatch the network

throughout a plant.

Ensuring that each mote

can be optimally

configured to its

environment and purpose

5

A04 4 Synchronise Sensor Readings

- Ensure that sensor data readings occur at

predictable and synchronised times at each

node

Reliable and timely data

acquisition

4

A05 5 Authentication

- Authentication will be provided to a minimum

of two users on a single-tenant platform

- The users will have identical permissions

Facilitates the

procurement of

confidential sensor data

Demonstrates the

potential scalability of the

system

4

A06 6 Operational Lifetime

- Sensor devices will operate for no less than 2.5

years for every 1000 mAh of battery capacity

supplied.

Low and infrequent

system maintenance costs

High reliability sensing

3

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 7

A07 7 Minimise System Cost

- Ensure total system cost is no more than $60

Affordability of

deploying large numbers

of sensors and

instrumentation

2

A08 8 Amplified User Experience

- Graphical display of time series data

- Consideration of best practices for Human-

computer interaction; simplistic

Ability to rapidly and

easily discern trends and

irregularities in sensor

data

2

A09 9 Virtual Manager

- The system should incorporate SmartMesh IP

VManager-based network management to

replace local embedded-based network

management

- A remote x86 based virtual machine with the

SmartMesh-IP VManager installed should be

capable of performing network management

functions when connected to a SmartMesh-to-

IP gateway that is local to the WSN site

Ability to more easily

scale and reconfigure

network

1

A10 10 Database Scalability

- The database design may be capable of

accommodating for data sent by hundreds of

sensors

- This scalable database design should be

incorporated into the cloud system with

considerations for the ‘Big Data’ movement

Ability to install

extensive monitoring

equipment throughout a

plant and manage the

associated data

1

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 8

2.3 Project Constraints

CSC has identified constraints to the project that must be considered alongside the project requirements (Table 4).

Table 4: Project Constraints

ID Constraint

C01 Sensor host application limited by duinoPRO UNO processor data memory (SRAM) of 2 Kbytes, 32 Kbytes

of In-System Self-Programmable Flash memory, and 1 Kbytes of EEPROM.

C02 Interposer PCB size limited by duinoPRO module dimensions of 29.27 x 28.54 mm [12] and allowed

overhang of 5 mm [13].

C03 Six GPOI pins are available for connecting the duinoPRO to module site seven. All are configurable; four are

capable of acting as standard UART protocol pins [14].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 9

3 System Architecture
This system implements a site-based WSN which uses the Transmission Control Protocol/Internet Protocol (TCP/IP)

to remotely transmit data to a client/developer for analysis whilst also being capable of remote configuration by the

client/developer. The three key ‘end-points’ in this system are shown in Figure 1.

Figure 1: Transactions between system end-points

Sensor data and diagnostic information are pushed from the site to the cloud infrastructure hosted on Amazon Web

Services (AWS), which provides storage and analysis services. Commands can be sent to the site to configure

sensor-hosts and updates can be patched by developers for the cloud services. Figure 2 provides a more detailed

view, exposing key sub-systems required for these transactions.

Figure 2: System architecture showing key sub-systems and interfaces

As seen in Figure 2, sensor-hosts (SH) and access-points (AP) are placed within the site to create a self-forming

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 10

multi-hop mesh WSN. The sensor-hosts within the WSN are AVR-based microcontrollers (duinoPRO) with digital

sensors and Dusty modules which provide communication using Linear Technology’s SmartMesh-IP network

protocol. Sensor-hosts sample data and diagnostics, and transmit/forward the resulting payload to the centralised

network manager node. The network manager uploads this data using the Node-RED service to AWS.

The sub-systems in AWS integrate with one another to perform two key tasks:

1) Parse data sent from the WSN and store it in a structured format for querying, and

2) Serve data and controls through a web-application accessible through a HTTP-browser.

The web-application accesses the cloud database, DynamoDB, to process the data for analysis and visualisation.

Further, it exposes interfaces that allow users to configure the WSN remotely. The same payload structure is used

for this task (Section 3.2), with each configuration parameter represented as one field. The web-application is

designed with Python Django and orchestrated with Elastic Beanstalk. Orchestration in this context refers to the

automatic-deployment and automatic-scaling of infrastructure to serve the web-application to clients. This includes

virtual servers for hosting the application, load balancing, and the DynamoDB interface for querying. Additionally,

Elastic Beanstalk provides a deployment service that allows developers to rapidly patch the web-application. Finally,

the Amazon API Gateway service provides a means of authentication and interprets and directs in/out-bound

streams.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 11

3.1 System Transactions

From a transactional viewpoint, as seen in Figure 1, there are 3 key transaction types within the system:

1. Data & Diagnostics: process variables are sampled from site and sent upstream to the relevant end points

(Figure 3)

a. Site-to-AWS: Raw data (process variable) is sent up-stream for storage and analysis

b. AWS-to-Client/Developer: Processed data is provided to the end-users

2. Configurations: Clients/developers can send configurations downstream to configure individual sensor-

hosts on site (Figure 4).

3. Updates: Developers can patch the AWS infrastructure downstream (Figure 5).

Figure 3: Data & Diagnostic Transaction

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 12

Figure 4: Configuration Transaction

Figure 5: Update Transaction

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 13

3.2 System-Wide Payload Standard

The payload standard that is sent throughout the network is shown in Figure 6

Figure 6: Payload structure and evolution from process variables.

The purpose of this payload structure is to ensure scalability and portability. Fields of information can easily be

added and removed without affecting the payload standard. The use of headers assists all end-points in analysing the

information; allowing devices to prepare buffers for the incoming payload/dataload.

As seen in Figure 6, the payload begins its assembly from ‘process variables’ – the information to be communicated.

These are called ‘fields’ (as in ‘fields of information’). Each process variable (the field value) is preceded by a

1 byte “Field Header” which describes what the field type is (i.e. the type of information) and length of the field

value (in bytes). Note that the data in the field value is stored most significant byte first.

Multiple fields are then packed and wrapped into a dataload. The dataload has a single 1 byte header which details

how many fields are expected in the payload. This serves the purpose of informing functions which disassemble the

payload how many times the ‘field’ decomposition process should be performed.

Finally, the dataload is wrapped into the payload. The payload header is crucial in informing recipients the type of

payload to expect. This is critically important to distinguish between Data & Diagnostic transactions and

Configuration transactions.

This structure of headers allows designers to implement a simply disassembly routine as seen in Figure 7.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 14

Figure 7: Dataload reading procedure

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 15

3.3 Summary
This section provides a brief summary of the design philosophy and outputs.

3.3.1 Design Philosophy

All design decisions were regulated to ensure the continual alignment of the project scope with the client's

expectations. Each sub-team initially prioritised the implementation of the mandatory requirements specified in

Table 2. Only after basic functionality of a component was achieved and the relevant mandatory requirements were

met did CSC extend the design to meet the aspirational requirements outlined in Table 3. This enabled the team to

optimise the man-hours assigned to the project, maximising high-value work aligned with the client's preferences. A

critical path analysis was regularly undertaken to ensure calibration between sub-teams, ensuring all deadlines

would be met according to schedule.

3.3.2 Final Design Elements

The final design elements (outputs) are listed in Table 5 below.

Table 5: Final Design Elements

Element Description Location

Requirements Analysis Defined the system requirements LMS

Preliminary Design Recorded first-pass design work LMS

System Design Strategy The architectural document that forms the

basis for the design.

This document

User Manual Manual for users and developers to assist

in the understanding of the system

https://CloudSevenConsulting.github.io/

Testing Document A detailed description of testing

conducted on the system throughout the

design process (from design,

implementation and deployment)

LMS

Preliminary

Implementation

CSC’s preliminary implementation of the

system

https://github.com/CloudSevenConsulting

https://cloudsevenconsulting.github.io/
https://github.com/CloudSevenConsulting

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 16

4 Stakeholder Engagement
Key stakeholder engagement activities undertaken during this project are outlined in Table 6 below. For each activity, the relevant issues and decisions are

described briefly alongside the resulting action items. Unless otherwise noted, all actions are for CSC. Stakeholder names are abbreviated within the table as:

SM (Dr Sally Male), MC (Mr Mark Callaghan) and MP (Mr Marcus Pham).

Table 6: Stakeholder Engagement Activities

Date Event Stakeholders Issues & Decisions Actions

31/07/2017 Project brief released SM

MC

❖ Design elements include: third party WSN, ATAMO

development platform, cloud-based database.

❖ Design considerations include: reliable communications

and energy usage.

❖ Research design elements and

considerations

07/08/2017 Project outline received

from client

MC ❖ Additional design elements: PCB for WSN module,

network manager/gateway and data display interface.

❖ Emphasis placed on sleep management of each device to

optimise energy usage.

❖ Confidentiality & IP status clarified.

❖ Continue research

10/08/2017 Project Partner Meeting MC

MP

❖ Emphasis placed on layered software approach with power

management as a layer.

❖ Sampling rate, operating environment, network size,

device current draw, system lifetime, cost and database

security specified.

❖ Design documentation with clear approach considered

most important requirement.

❖ Continue research

❖ Develop draft requirements

❖ Form sub-teams

17/08/2017 Technical Queries 1-6 MC ❖ System architecture, operating conditions assumptions and

draft requirements approved.

❖ Expected system lifetime is 1 year/1000 mAh.

❖ Packet structure will require bytes indicating the type of

data/packet.

❖ Allow for 16-bit sensor data.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 17

Date Event Stakeholders Issues & Decisions Actions

24/08/2017 Project Partner Meeting MC

MP

❖ Allowable data acquisition delay is 2 minutes.

❖ Cost requirements clarified.

❖ The ability to vary sampling rate is desirable.

❖ Construct hardware testing

setup for duinoPRO and Dusty

❖ Complete Requirements

Analysis

25/08/2017 Requirements Analysis

shared with client

MC

06/09/2017 Technical Queries 7-8 MC ❖ Interposer PCB only required for motes, not APs or

network manager.

❖ Allowed overhang of 3-5 mm suggested for PCB.

❖ Dusty module will be programmed before assembly.

06/09/2017 AWS access received MC ❖ Username, password and setup information received.

07/09/2017 Project Partner Meeting MC

MP

❖ Database and GUI technology selected.

❖ Web-hosted GUI preferred.

❖ Sampling rate configuration for motes clarified (default,

plus ability to update from network manager).

❖ Use of a scheduler such as Guarded Atomic Actions

recommended.

❖ Clarified function of duinoPRO pins.

❖ Update mote main routine in

light of new configuration

requirement

❖ Dusty-duinoPRO pin mapping

with pin descriptions

❖ MC to provide duinoPRO

libraries and GAA resources

08/09/2017 duinoPRO libraries

received, feedback on

minutes

MC

❖ Default mote configuration will be compiled in with

updated values stored in RAM.

❖ Motes should be inactive if not connected to a network.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 18

Date Event Stakeholders Issues & Decisions Actions

21/09/2017 Preliminary Design

Interviews & Review

Meeting

MC

MP

SM

❖ Requirements for hardware documentation clarified (pins,

communications).

❖ ISRs for hardware communication must be brief.

❖ Sensor resolution clarified to be variable, but 16-bits must

be allowed for.

❖ Configuration data should be stored by mote in the

database, not timestamp.

❖ Desirable GUI features include: zoom, selecting start time

and different display intervals.

❖ Complete prototype system for

software & hardware testing.

❖ Describe reason for inclusion

or non-inclusion of each pin in

Dusty-duinoPRO pin mapping

❖ Timing diagram for UART

❖ Investigate PCB volume

pricing

❖ Clarify how timestamps are

collected and used

❖ Investigate minimisation of

communication from gateway

to minimise cost

❖ Address how configuration

data will be handled in the

cloud database

❖ Implement additional GUI

features

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 19

Date Event Stakeholders Issues & Decisions Actions

28/09/2017 Design Review Meeting MC

MP

❖ Decision to only design the Dusty PCB and not attempt to

complete layout and fabrication (time constraints).

❖ Django (for GUI) noted as being suitable for final design

❖ UART mode 2 confirmed as more desirable due to its

more robust handshake protocol.

❖ If multiple interrupts are used, timing could become an

issue for simultaneous interrupts.

❖ State management of motes from network manager should

be considered.

❖ In the database, configuration data should be stored by

mote ID.

❖ It is desirable for GUI to be scalable to large numbers of

motes/sensors.

❖ Limited memory of the ATMega328P processor flagged

as an issue.

❖ Investigate PCB test points

❖ Note option to select mote

sensor driver at compile time

❖ Provide clear definition of

payload and dataload headers

in packet structure definition

❖ Define sleep management

process during network joining

❖ Assess interrupt latency (if

multiple ISRs are used)

❖ Clarify when network time is

queried in program

❖ Develop plan for mote state

tracking at the network

manager

❖ Change primary key for

configuration table to

composite key (mote ID).

❖ Develop plan for displaying

large numbers of sensors in

GUI

❖ Record the choice of software

licence in report.

❖ Complete code documentation

(using DOxygen)

29/09/2017 Emails regarding

GitHub and Linear

Technology account

MC ❖ GitHub links and MyLinear account details shared with

MC.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 20

Date Event Stakeholders Issues & Decisions Actions

07/10/2017 Email regarding

reorganisation of

GitHub repositories

MC ❖ New GitHub links and structure shared with MC.

15/10/2017 AWS Access Incident MC ❖ AWS access credentials were inadvertently pushed to the

GitHub (publicly accessable), but quickly removed and

reset. Amazon detected the release of information and MC

was immediately notified.

❖ Team rules put in place for

avoiding and handling similar

situations in future.

19/10/2017 Project Partner Meeting MC

MP

❖ UART issues discussed: messages sent correctly, but

actions/responses not occurring.

❖ Duty-cycle management in mote join routine discussed

and considered non-mandatory.

❖ Decision to cease development and dedicate time to

reporting.

❖ Provide a single link/document

that provides access to all

project documentation, code,

info, etc.

❖ Provide instructions for setting

up database.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 21

4.1 Design Review Actions

Specific actions resulting from the design review meeting are repeated below in Table 7 along with the sections

which contain the responses to these actions.

Table 7: Design Review Actions

Action Section Addressing Action

Investigate PCB test points 13.2

Note option to select mote sensor driver at compile time 5.2.12

Provide clear definition of payload and dataload headers in packet structure

definition

3.2

Define sleep management process during network joining 5.2.9

Assess interrupt latency (if multiple ISRs are used) Multiple ISRs not required

Clarify when network time is queried in program 5.2.10

Develop plan for mote state tracking at the network manager 5.2.14

Change primary key for configuration table to composite key (mote ID). 5.3.4

Develop plan for displaying large numbers of sensors in GUI 5.3.6Error! Reference source not

found.

Record the choice of software licence in report. 5

Complete code documentation (using DOxygen) See User Manual submission

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 22

5 Design Decisions
The various design decisions have been summarised in Table 8. The “Justification” column points to the section in

which the analysis for the design decision has been conducted.

Table 8: Summary of Design Decisions

Design Decision Selection Justification

Relevant

Requirements &

Constraints

Source Code Licensing Open Source / MIT Promotes use of

system, client

preference [15]

Power supply output

impedance

Limit output impedance of power

supply to 5Ω

5.1.2

Radio Reference Crystal

Oscillator Trim Value

Trim 20 MHz crystal by 64 ppm 5.2.2 M05, A02

Endianness for multi-byte

UART

Little-Endian 5.2.3.2

UART Baud rate 9600 bits per second 5.2.3.3

UART maximum frame

length

8 bytes 5.2.3.3

UART maximum

message queue

4 messages 5.2.3.3

Maximum sampling rate Maximum sampling rate of 0.1 Hz (1

sample per 10 seconds)

5.2.6 M04

Sleep-guard Lock

Prevention

Configurable timeout for sleep-guard

protection in scheduling

5.2.5 M04, A06

Sampling Layered and approach to sampling-

related functions

5.2.10 M07, M08, A01

Read sensor data Layered and approach to sensor data

reading functions

5.2.11.3 M07, M08, M11

System parameters

identification in

configuration payloads

One-to-one match between field type

in configuration payloads, index in

device configuration array and lookup

table

5.2.13.2 A03, C01

duinoPRO baseboard duinoPRO UNO Availability

Hardware

Communication Protocol

UART Mode 2 5.2.3 M07, M09

PCB fabrication vendor

and cost

EasyEDA 5.1.3 A07

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 23

Design Decision Selection Justification

Relevant

Requirements &

Constraints

Duty Cycle Management Dynamically Update 5.2.9 M04

Choice of Network

Manager

Embedded Manager 5.2.14 M05, A02

Choice of Cloud Service

Provider

AWS 5.3.2 M03, M08, M09,

A07

Choice of Database Amazon DynamoDB 5.3.3 M03, M08, M09,

A03, A10

Database Design Sensor Data Table & Configuration

Data Table

[Partition Key: MoteID]

[Sort Key: Timestamps]

5.3.4 M03, M08, M09,

A03, A07, A10

Web Application

Framework

Django 5.3.5 M03, M10, A08,

Interface Design Sign in authentication; interactive GUI

displaying time-series data

5.3.6 M03, M10, A05,

A08, A10

Deployment AWS Elastic Beanstalk 5.3.7 M03, M10, A08,

A10

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 24

5.1 Hardware Design

The hardware design is concerned with coupling between two modules: the Dusty module provided by IoTeam, and

the duinoPRO development board provided by ATAMO. This section covers the design of the interposer PCB

required to adapt the Dusty module to the duinoPRO. To facilitate the transfer of this data between the Dusty

module and duinoPRO, CSC has chosen API UART Mode 2 as the hardware communication protocol (see Section

5.2.3). CSC has also recommended EasyEDA as the PCB vendor to fabricate the PCB.

5.1.1 PCB Layout

given the hardware communication protocol, the interposer Dusty PCB can be designed via KICAD. The board

layout of the interposer Dusty PCB encompasses a Surface Mount Device (SMD) which adapts to the Dusty module

and a series of castellated mounting holes across the edge of the board as shown in Figure 8. Furthermore, unused

pins of the Dusty required proper pin termination to ensure Dusty operates as intended. A detailed description of pin

mapping and termination is presented in Appendix B – IoTeam Dusty Net List.

Figure 8: Interposer Dusty PCB

5.1.2 Power Supply Design

Due to its heavy duty cycling for radio communication, the Dusty module’s current consumption has a substantial

demand profile. It is recommended that a power supply of low impedance (𝑍𝐷𝐶,𝑂𝑢𝑡 < 5 Ω) [16] be used such that it

can respond to sudden changes in current consumption [16].

From the current profiles in Figure 20, Figure 21, and Figure 22, the power supply for the Dusty module must be

able to ramp from 250 𝜇𝐴 to 10 𝑚𝐴 in less than 1 𝜇𝑠 without generating a transient voltage greater than 200 𝑚𝑉

co-incident with the current ramp. This ramp is seen prominently during preparation of transmission for data

transmission (‘Tx Prep’ in Figure 20) and sending the acknowledge byte after data reception (‘Tx Acknowledge’ in

Figure 21).

5.1.3 Cost Analysis of PCB Fabrication

In order to satisfy requirement A07, CSC has conducted cost analysis of PCB fabrication for the interposer Dusty

PCB from two PCB vendors, namely Wurth Elektronik and EasyEDA. Table 9 lists the fabrication, shipping, tax

and total cost for a single PCB for these vendors [16, 17].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 25

Table 9: Cost of PCB fabrication

PCB Vendor Wurth Elektronik EasyEDA

Cost of fabrication $75.65 $4.93

Cost of shipping $10.45 $28.88

Tax $16.35 -

Total Cost $102.45 $33.81

As seen from Table 1, the total cost of EasyEDA is cheaper than Wurth Elektronik. However, Wurth offers services

such as PCB routing verification, troubleshooting and additional PCB features, whereas EasyEDA only offers basic

services. However, for the purposes of this project, EasyEDA is the most preferred vendor as it able to fulfil the

project requirements.

In addition to the above, CSC investigated how the pricing of PCB fabrication varies with quantity. This will be of

interest to ATAMO should this system be brought into large-scale production. As shown in Table 10 and

Figure 9, larger quantities correspond to a lower per-unit price.

Table 10: PCB Cost and Quantity

PCB Quantity Cost of Single PCB Total Cost of PCB Fabrication

50 $0.89 $44.33

100 $0.50 $49.92

150 $0.34 $51.06

200 $0.27 $54.34

250 $0.23 $57.63

300 $0.20 $61.07

350 $0.18 $64.36

400 $0.17 $67.64

450 $0.16 $70.93

500 $0.15 $74.37

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 26

Figure 9: PCB Cost Per Unit Produced

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 27

5.2 Embedded Design: Sensor-Host

Sensor-hosts form the nodes within the system network described in requirement requirements M05/A02. They are

responsible for sensing physical data (process variables) from a site and transmitting the data to a central node, as

specified in requirements M07, M08, and M09. The implementation of the sensor-host by CSC consists of three key

devices:

1. The IoTeam Dusty Module, which uses the LTC5800-IPM (Eterna) System-on-Chip,

2. The UNO duinoPRO platform based on Atmel’s ATmega328P microcontroller, and

3. A sensor module occupying one of six module spaces on the duinoPRO platform.

The embedded application of the sensor-hosts refers to the firmware, logic, and drivers of the duinoPRO platform.

The embedded application is crucial in addressing requirement M04/A06 (through scheduling strategies), A03

(using the application layer), and A04 (using the network layer).

Figure 10 shows these three devices as well as their core functional blocks, key units and interfaces between them.

Figure 10: Functional block-diagram of Sensor-Host with payload

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 28

5.2.1 Dusty Eterna Flash

In order to integrate the Dusty module with the sensor-host, the Dusty module must have a custom embedded flash

program based on Linear Technology’s Eterna System-on-Chip solution (herein after called the ‘flash program’).

The flash program is 512 kB in size and divided into 4 image components as seen in Figure 11 and Table 11 [17].

Figure 11: Eterna flash image and components

A key configuration for the Dusty module is setting the device into ‘Slave mode’, in which it forfeits control of its

radio functionality to an external processor which communicates through its API or CLI communication ports.

Whilst the Dusty Module is a System-on-Chip solution which can act as its own master, CSC elected to use an

external master microprocessor (the duinoPRO) to satisfy requirement M11.

Table 11: Eterna flash components description

Image Component Start Address

(Hex)

Description

Fuse Table 0 2 kB image containing hardware and software configuration settings.

Partition Table 800 Defines the location of the elements in the Flexible mapping portion of

Eterna’s image

Main Executable 1000 The main executable image. Each variant of the Eterna product family has

a corresponding main executable

Loader 77800 The loader manages handling of completed Over-the-air-Programming

(OTAP) images and starting the Main Executable image.

Importantly for these design, the Fuse Table must be configured correctly to ensure operation of the Dusty device.

Through this configuration, CSC has elected to disable the majority of the Dusty’s Input/Output (I/O) functionality

to minimize power consumption as per requirement M04/A06. The remaining non-general purpose pin functionality

is listed in Table 12Error! Reference source not found..

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 29

Table 12: Non-General Purpose Pin Configuration

Pin # Signal Direction Pull Power Consumption

22 RESETn Input Pull-Up 50 nA

23 TDI Input Pull-Up 50 nA

24 TDO Output

25 TMS Input Pull-Up 50 nA

26 TCK Input Pull-Down 50 nA

37 UARTC0_TX Output

38 UARTC0_RX Input Pull-Up 50 nA

55 FLASH_P_ENn Input Pull-Up 50 nA

66 UART_RX_RTSn Input

67 UART_RX_CTSn Output

68 UART_RX Input

69 UART_TX_RTSn Output

70 UART_TX_CTSn Input

71 UART_TX Output

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 30

5.2.2 Dusty Crystal Configuration

A 20 MHz crystal oscillator source (OSC_20M) is used as the radio frequency reference for the LTC5800 System-

on-Chip and is critical for radio communication [16], and hence requirement M05/A02. Because of the criticality of

this component, Linear Technology has recommended selection of this component from one of the performance

verified vendors. IoTeam has elected the ECS crystal for their Dusty module as listed in Table 13.

Table 13: Eterna 20MHz Crystal Configuration as in Eterna Flash

OSC_20M Crystal Part Number ECS-200-CDX-0914

OSC_20M Load Trim 64 ppm

The 20 MHz crystal has 2 capacitors which support its functionality, known as load capacitors; the LTC5800-IPM

System-on-Chip has these capacitors in-built [17]. The values of the load capacitors is controlled through the fuse

table at memory address 0x13, the ‘Load Trim’ setting [17]. Load trimming is done to account for variations in

printed-circuit board layout and dielectric stack-up. The extent of trimming is determined through frequency

characterisation performed on a statistically meaningful number of targets to account for unit-to-unit variation.

The frequency characterisation process begins by using a calibrated timing reference signal from Linear

Technology’s DC9010 to characterise the target board layout and return an optimal load trim (or pull value) [17].

Over a sample of boards, the optimal trim value is then used and verification of the frequency characterisation is

performed to determine if the trim value is adequate for the design. CSC has determined the optimal value for the

evaluation Dusty module to be 64 ppm; however, CSC recommends that future designers re-perform this analysis

for new systems over a more statistically significant sample size.

As an example, the distribution of recommended trim values based on the DC9010’s calibrated timing signal over a

set of boards is seen in Figure 12 [17].

Figure 12: Distribution of optimal load trim values for crystal calibration over 98 samples

From this, the boards are then configured with the optimal trim value (in this case 70 ppm) and frequency

characterisation is performed with the DC9010 to determine the spread of frequency errors as seen in Figure 13 [17].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 31

Figure 13: Frequency characterisation from LTC5800 radio generated from the 20 MHz reference

The histogram in Figure 13 shows a well-centred, normally-distributed set of errors which are largely caused from

the integer rounding in the load trim value set in the flash program’s fuse table. Such a histogram profile suggests

the load trim value is well suited for the board and conditions. However, this analysis must be re-performed for

changing conditions (most notably in this case, temperature).

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 32

5.2.3 DuinoPro-to-Dusty Interface

The duinoPRO and Dusty module on-board the sensor-host communicate with one another through the serial

Universal Asynchronous Receiver/Transmitter (UART) protocol. This is the only available protocol in which the

Dusty module exposes for master control through an external processor, in this case the duinoPRO.

There are two distinct ports in which UART master control, the API UART and the CLI UART. The CLI UART

serves as a debugging port in which a Serial Terminal installed on a computer can communicate to the Dusty module

with command line interfaces. The API port is designed such that a set of programming interfaces can be used by a

microcontroller, such as the duinoPRO, without the need for a command line interface. Hence the API UART port is

the designated communication protocol between the duinoPRO and Dusty module.

There are two options for API UART, mode 2 (with 6 pins) and mode 4 (with 4 pins). CSC has elected to use mode

2 as this mode includes two additional control flow signals (along the duinoPRO-to-Dusty lines) for more robust

communication; mode 4 is constrained to a smaller operating temperature range due to reliability issues in flow

control [18]. CSC has determined that mode 4 would compromise requirements M07 and M09 due to this lack of

reliability.

The 6 pins of API UART mode 2 is mapped to the duinoPRO as seen in Figure 14Error! Reference source not

found..

Figure 14: API UART pin mapping between duinoPRO and Dusty Module

5.2.3.1 Timing

The process of sending data from the duinoPRO to the Dusty module, as shown in Figure 15, is as follows;

1. The duinoPRO begins communication by asserting (falling-edge) the RTS (UART_RTS 

UART_RX_RTSn) line.

2. The Dusty module responds (as an acknowledgement) by asserting (falling-edge) the CTS (UART_CTS 

UART_RX_CTSn) line

3. After the duinoPRO detects the asserted CTS line, it transmits the HDLC framed payload.

4. Following the transmission of the final byte in the HDLC payload, the duinoPRO negates (rising-edge) the

RTS line.

5. The Dusty module responds by negating (rising-edge) the CTS line

6. Communication can again restart after a designated time period of 𝑡𝑖𝑛𝑡𝑒𝑟𝑏𝑦𝑡𝑒.

The entire communication process takes a net time as shown below

𝑡𝑠ℎ−𝑑𝑢𝑠𝑡𝑦 = 2 ⋅ 𝑡𝑅𝑇𝑆−𝐶𝑇𝑆 + 𝑡𝐶𝑇𝑆−𝑅𝑋 + 𝑡𝑅𝑋−𝐶𝑇𝑆 + (𝑁𝑏𝑦𝑡𝑒 − 1) ⋅ 𝑡𝑖𝑛𝑡𝑒𝑟𝑏𝑦𝑡𝑒

= 2(2ms) + 20ms + 22ms + (𝑁𝑏𝑦𝑡𝑒 − 1) ⋅ 100ms

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 33

Formally, the time (in milliseconds) to transmit data from duinoPRO to dusty as a function of the length of the

payload is then:

𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(𝑁) = 100(𝑁 − 1) + 46

Figure 15: Timing diagram for duinoPRO to Dusty UART communication

The process of sending data from the the Dusty module to the duinoPRO, as shown in Figure 16, is as follows;

1. The Dusty module begins communication by asserting (falling-edge) the TX RTS (UART_TX_RTSs 

UART_INT) line.

2. This triggers an interrupt in the duinoPRO, to which it responds (as an acknowledgement) by asserting

(falling-edge) the CTS (UART_CTS  UART_TX_CTSn) line

3. The Dusty module then transmits the HDLC framed payload to the duinoPRO

4. Following the transmission of the final byte in the HDLC payload, the Dusty module negates (rising-edge)

the RTS line.

5. The duinoPRO responds by negating (rising-edge) the CTS line

6. Communication can again restart after a designated time period of 𝑡𝑖𝑛𝑡𝑒𝑟𝑏𝑦𝑡𝑒.

The entire communication process takes a net time as shown below

𝑡𝑠ℎ−𝑑𝑢𝑠𝑡𝑦 = 2 ⋅ 𝑡𝑅𝑇𝑆−𝐶𝑇𝑆 + 𝑡𝐶𝑇𝑆−𝑅𝑋 + 𝑡𝑅𝑋−𝐶𝑇𝑆 + (𝑁𝑏𝑦𝑡𝑒 − 1) ⋅ 𝑡𝑖𝑛𝑡𝑒𝑟𝑏𝑦𝑡𝑒

= 2(2ms) + 20ms + 22ms + (𝑁𝑏𝑦𝑡𝑒 − 1) ⋅ 100ms

Formally, the time (in milliseconds) to transmit data from duinoPRO to dusty as a function of the length of the

payload is then:

𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(𝑁) = 100(𝑁 − 1) + 46

Figure 16: Timing diagram for Dusty to duinoPRO UART communication

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 34

5.2.3.2 Endianness

The ATmega328P which the DuinoPro is based on is a Little-Endian platform, and hence the UART module ports

little-endian functions when accessing greater than 1-word memory.

5.2.3.3 Interface Limits

The UART interface is limited with a maximum payload of 8 bytes. This is to ensure enough data memory can be

reserved for other units of functionality in the embedded application. 8 bytes was specifically chosen, as this is the

expected limit for ‘business-as-usual’; with 3 bytes for the sensor field, 3 bytes for the diagnostic field, and 2 bytes

for the timestamp field.

The UART is designed with a message buffer to allow the slower of the two devices time to process incoming

messages. This buffer is also restricted to a maximum of 4 queued messages (each of maximum 8 bytes). This is

primarily motivated to reduce data memory consumption on the device. As per constraint C01, the DuinoPro device

only has 2KB of SRAM, in which must be utilized for higher priority functionality.

The baud rate of the interface is set to 9600 bps, as opposed to the optional 115.2 kbps. This is due a (relatively) low

frequency ripple that occurs at higher transmission frequencies. As seen in Figure 17Error! Reference source not

found., a ripple at 48.2% of the signal can be observed when the baud rate is set to 115.2 kbps.

Figure 17: Ripple at high UART baud rates

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 35

5.2.4 Embedded Application Architecture

As required by M03, CSC has designed a layered-model of the embedded application for the duinoPRO with 4

layers, these are, from lowest abstraction to highest:

• System-Core

• Hardware Abstraction Layer (HAL)

• Network Layer

• Application Layer

The system-core refers to the internal abstraction of hardware; it is the interface to system-calls such as power

management, and timing.

Alongside the system-core layer, the HAL is the lowest-level layer as it is implementation dependent. The HAL

provides an interface to the device’s hardware, and ensures that the implementation details of the interface remain

hidden (or abstracted) from the other layers. This ensures that when the hardware implementation changes, as it does

with the sensor drivers and sensor MUX, the layers that interface the HAL do not need to change, as they remain

indifferent to the implementation. This is consistent with requirement M11.

The network-layer is a middleware layer; one that allows the integration of different systems. In this case, this

middleware layer integrates the DuinoPRO with the Dusty module. It provides the API functional C-port which

other layers can reliably call.

The application layer is the highest-level layer as it provides the core functionality of the embedded-application. It is

responsible for determining what and when to sample data, implementing the payload structure as described in

section 3.2, and scheduling and managing its utility and memory.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 36

5.2.5 DuinoPRO State Management

The key state variables that determine the sensor-host’s states, and the corresponding states are shown in Table 14.

These states are determined from the required operation of the sensor-host. The “Wake-up” and “Low-Power” states

are consequences of M04/A06; the “Processing” and “Interrupt” states provide for the processes that implement data

sampling as required by M07, M09, and A04 and configuration flexibility (A03); the “Initialization” and “Joining”

states are required for the transient periods in which the system first starts or when the network fails to connect the

device. To maintain safety of the system (M02), an “Error” state is provided for system faults in which are marked

as critical.

As mentioned Table 14 the state variables will be encapsulated, in which only the processes that invoke state

changes can access. Exposing functions will be provided by these processes to allow for state changes.

Table 14: System states and variables.

State

Ready Configuration

Loaded

Connected Interrupt

Flags

Blocking Sleep

Guard

Initialization 0 0 0 0 0 1

Error State 0 X X X X 0

Wake-up 0 1 X 1 1 1

Low-Power 1 1 X 0 0 0

Joining 1 1 0 X 1 1

Processing 1 1 1 0 X 1

Interrupt 1 1 1 1 1 1

The processes that invoke state changes are shown in Figure 18, in which either an event or process will have a

corresponding function associated to it. These functions will access the globally shared state variables and modify

them as required.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 37

Figure 18: State control and transitions.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 38

5.2.6 Power Consumption & Management

The Dusty module performs three atomic operations throughout its lifetime in this system, each of which have

distinct power demand profiles; transmission of packets (Figure 20, Figure 21 and Figure 22) and idle listening for

packets (Figure 22) [16] These atomic operations only occur during the Dusty’s scheduled time-slot as determined

in the Dust SmartMesh-IP protocol. Outside of the scheduled time-slots, the Dusty module is in its ‘Doze’ state with

its lowest power consumption. These atomic operations only occur during the Dusty’s scheduled time-slot as

determined in the Dust SmartMesh-IP protocol. Outside of the scheduled time-slots, the Dusty module is in its

‘Doze’ state with its lowest power consumption.

During a scheduled transmission of sensor data, the Dusty module performs an atomic transmission and reception –

The atomic transmission consumes a maximum charge of 𝑄𝐷𝑢𝑠𝑡,𝑇𝑋 = 54.5 𝜇𝐶 over 7.25 𝑚𝑠 (as seen in Figure 20:

Power consumption of Dusty module during packet transmission), whilst the atomic reception consumes a

significantly smaller maximum 𝑄𝐷𝑢𝑠𝑡,𝑅𝑋 = 32.6𝜇𝐶 of charge over 7.25 𝑚𝑠 (as seen in Figure 21). If the sample

rate of the sensor-host is 𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒, and 𝑇𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 =
1

𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒
≫ 7.25 𝑚𝑠, then the average power consumption

due to packet transmission of the sensor-host’s own packets (𝑃̅𝐷𝑢𝑠𝑡,𝑇𝑋) is:

𝑃̅𝐷𝑢𝑠𝑡,𝑇𝑋 = (𝑄𝐷𝑢𝑠𝑡,𝑇𝑋 + 𝑄𝐷𝑢𝑠𝑡,𝑅𝑋) ⋅ 𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒

The Dusty module must also forward packets from neighbouring motes in the mesh network. This is the largest

consumption of power for the Dusty module. Each forward operation requires an atomic idle listen, consuming

QDust,Idle = 6.4 μC of charge every 7.25 ms (Figure 22), an atomic receive, and an atomic transmit. For a network

of 𝑁 motes, if we assume an average packet forwarding rate of 𝜂𝐹𝑊𝐷𝑃̅𝐷𝑢𝑠𝑡,𝐹𝑊𝐷) is:

𝑃̅𝐷𝑢𝑠𝑡,𝐹𝑊𝐷 = (𝑄𝐷𝑢𝑠𝑡,𝑇𝑋 + 𝑄𝐷𝑢𝑠𝑡,𝑅𝑋 + 𝑄𝐷𝑢𝑠𝑡,𝑖𝑑𝑙𝑒) ⋅ 𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 ⋅ 𝜂𝐹𝑊𝐷 ⋅ 𝑁

In addition to this, the net leakage current from the Dusty’s pins, as seen in Figure 22, consume approximately

300 𝑛𝐴 at 3.6 𝑉, thus the net idle power of the Dusty module, 𝑃𝐷𝑢𝑠𝑡,𝑖𝑑𝑙𝑒 is given as:

𝑃𝐷𝑢𝑠𝑡,𝑖𝑑𝑙𝑒 = 1.08 𝑢𝑊

Thus, the average net power consumption of the Dusty module (𝑃̅𝐷𝑢𝑠𝑡,𝑛𝑒𝑡) is given by:

𝑃̅𝐷𝑢𝑠𝑡,𝑛𝑒𝑡 = 𝑃𝐷𝑢𝑠𝑡,𝑖𝑑𝑙𝑒 + 𝑃̅𝐷𝑢𝑠𝑡,𝑇𝑋 + 𝑃̅𝐷𝑢𝑠𝑡,𝐹𝑊𝐷

CSC has determined that for a network of 50 motes sampling every 10 seconds with a packet forwarding rate of

𝜂𝐹𝑊𝐷 = 50% the Dusty consumes a maximum current of 244 𝑢𝑊, 59% of the prescribed energy allowance in

requirement M04. Whilst this calculation is well beyond the network requirements specified in M05, and is an

overstatement of the power consumption, it provides a useful baseline for designing the sensor-host scheduling

system.

Figure 19 shows 𝑃̅𝐷𝑢𝑠𝑡,𝑛𝑒𝑡 over the 2-D space sweeping along the sensor-host sampling rate, 𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒, and the

network size, 𝑁.

At this extremum, the duinoPRO must utilize 41% of the prescribed energy allowance in requirement M04, or an

average power consumption of 170 𝑢𝑊.

With the duinoPRO having an active power consumption of 𝐼𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 = 0.2 𝑚𝐴 and a power-saving consumption of

𝐼𝐷𝑃,𝑠𝑎𝑣𝑒 = 0.75 𝜇𝐴 [19] the net power consumption of the duinoPRO is then:

𝑃̅𝐷𝑃,𝑛𝑒𝑡 = 𝑉𝑑𝑑 (𝐼𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 ⋅ 𝜂𝐷𝑃 + 𝐼𝐷𝑃,𝑠𝑎𝑣𝑒(1 − 𝜂𝐷𝑃))

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 39

Where:

- 𝑃̅𝐷𝑃,𝑛𝑒𝑡 is the net average power consumption of the duinoPRO

- 𝑉𝑑𝑑 is the supply voltage

- 𝜂𝐷𝑃 is the utilization of the duinoPRO

Solving for the utilization;

𝜂𝐷𝑃 =
𝑃̅𝐷𝑃,𝑛𝑒𝑡

𝑉𝑑𝑑(𝐼𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐼𝐷𝑃,𝑠𝑎𝑣𝑒)
−

𝐼𝐷𝑃,𝑠𝑎𝑣𝑒

𝐼𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐼𝐷𝑃,𝑠𝑎𝑣𝑒

For a target 𝑃̅𝐷𝑃,𝑛𝑒𝑡 = 170 𝜇𝑊 the duinoPRO must have a maximum utilization of 𝜂𝐷𝑃 ≤ 23.3% to satisfy

requirement M04.

Figure 19: Sweep over frequency and network size to determine power consumption of Dusty module

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 40

Figure 20: Power consumption of Dusty module during packet transmission

Figure 21: Power consumption of Dusty module during packet reception

Figure 22: Power consumption of Dusty module during idle listening

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 41

5.2.7 Sleep Management

With a maximum utilization of 𝜂𝐷𝑃 ≤ 23.3% as described in section 0, CSC has implemented an effective

scheduling regime which ensures the duinoPRO device is only active when it needs to be. This sleep schedule can

be seen in Figure 23 with the key variables described in Table 15.

Table 15: Variables used for scheduling.

Parameter Description Calculation

𝑻𝒏𝒐𝒘 The current time From Dust Network clock

𝑻𝒏𝒆𝒙𝒕−𝒔𝒂𝒎𝒑𝒍𝒆 The timestamp for the next sample Calculated from sampling rate configuration

𝑻𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅 A configuration parameter which accounts

for errors in sleeping time, and allows

overhead time for rebooting

Given from configuration

𝑻𝑨𝑽𝑹,𝒔𝒍𝒆𝒆𝒑 The time the sensor-host is in low-power

state as determined by:
𝑇𝐴𝑉𝑅,𝑠𝑙𝑒𝑒𝑝 = (𝑇𝑛𝑜𝑤 − 𝑇𝑛𝑒𝑥𝑡−𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

𝑻𝑨𝑽𝑹,𝒘𝒂𝒊𝒕 The time the sensor-host must wait to

sample data at the correct time
𝑇𝐴𝑉𝑅,𝑠𝑙𝑒𝑒𝑝 = (𝑇𝑛𝑜𝑤 − 𝑇𝑛𝑒𝑥𝑡−𝑠𝑎𝑚𝑝𝑙𝑒)

The core routine depicted in Figure 23 shows the timeline of the duinoPRO’s device state during one sample period.

The net active time is then determined by:

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 ≤ 𝜂𝐷𝑃 ⋅ 𝑇𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒

Similarly, the net low-power and reboot time is given by:

𝑡𝐷𝑃,𝑠𝑎𝑣𝑒 ≥ (1 − 𝜂𝐷𝑃) ⋅ 𝑇𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒

There are however constrains on 𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒, as the duinoPRO requires a minimum time for the system to perform

processing, wake, and sleep commands.

Figure 23: Sensor-host core routine with periodic sleep

If we are to assume 𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(𝑁) ≫ 𝑡𝐷𝑃,𝑤𝑎𝑘𝑒 ≫ 𝑡𝐷𝑃,𝑠𝑙𝑒𝑒𝑝and the maximum payload is 16 bytes then the duinoPRO

must be active for at least the period in which the duinoPRO is communicating to the Dusty module

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 42

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 ≥ 𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(16) = 100(16 − 1) + 46 𝑚𝑠 = 1.55 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Where:

- 𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(𝑁) is defined in Section 5.2.6.

Thus the maximum sensor host sampling frequency is constrained such that:

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒

𝜂𝐷𝑃

≥ 𝑇𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 =
1

𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒

𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 ≤
𝜂𝐷𝑃

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒

For 𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 = 1.55 𝑠𝑒𝑐𝑜𝑛𝑑𝑠:

𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 ≤
0.233

1.55
= 0.15 𝐻𝑧

This is already in excess of the maximum frequency of 0.1 𝐻𝑧 CSC has designed for in ensuring requirement M04 is

met through the Dusty module power consumption in section 0.

If more aggressive power saving is employed (at the risk of data loss) by forcing the duinoPRO to sleep during

Dusty communication time then we relax the assumption 𝑡𝐷𝑃−𝑑𝑢𝑠𝑡𝑦(𝑁) ≫ 𝑡𝐷𝑃,𝑤𝑎𝑘𝑒 ≫ 𝑡𝐷𝑃,𝑠𝑙𝑒𝑒𝑝, then:

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 𝑡𝐷𝑃,𝑤𝑎𝑘𝑒

The wake time is dictated by the start-up time of the crystal oscillator for the ATmega328P’s system clock. This is

driven by the fact that any clock source requires a sufficient 𝑉𝑑𝑑 to start oscillating correctly, along with a minimum

number of oscillating cycles before it can be considered stable [19].

During start-up the ATmega328P issues an internal reset with a time-out delay (𝑇𝐴𝑉𝑅,𝑇𝑂𝑈𝑇). The time-out delay

allows sufficient time for a minimum 𝑉𝑑𝑑 to reach its steady state value on turn-on. Thus, 𝑇𝐴𝑉𝑅,𝑇𝑂𝑈𝑇 must be set

larger than the 𝑉𝑑𝑑 rise time [19].

Following this, the clock oscillator is required to oscillate a minimum number of cycles before it is considered stable

by the ATmega328P [19].

If we use the maximum 𝑇𝐴𝑉𝑅,𝑇𝑂𝑈𝑇 = 69 𝑚𝑠 and the maximum clock cycles of 𝑁𝑐𝑙𝑘 = 258 𝐾 + 258 𝐶𝐾 = 516 𝐶𝐾,

with a system clock frequency of 12 𝑀𝐻𝑧;

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒 ≈ 𝑡𝐷𝑃,𝑤𝑎𝑘𝑒 = 69 𝑚𝑠 +
516

12 𝑀𝐻𝑧
= 69.04 𝑚𝑠

Thus;

𝐹𝑆𝐻,𝑠𝑎𝑚𝑝𝑙𝑒 ≤
𝜂𝐷𝑃

𝑡𝐷𝑃,𝑎𝑐𝑡𝑖𝑣𝑒
= 3.37 𝐻𝑧

Which again is within the tolerable levels to which CSC has designed for.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 43

5.2.8 Main Mote Routine

The main mote routine is the main driver of the wireless network system. It is responsible for determining the state

of the duinoPRO, Dusty module and sensors. The mote is capable of reading configuration files from the network

manager and returning the sensor readings at the appropriate intervals. It achieves this through calls to individual

subroutines and a complex scheduling system as seen in Figure 24.

Figure 24: Mote Main Routine Logic

5.2.8.1 Start-Up Mode

System initialisation of the mote is largely autonomic within the SmartMesh API [4]. Initial system checks are run

on both the duinoPRO and Dusty on start-up which are largely not user-configurable [4]. After the mote is initialised,

it will load the default configuration parameters which will be hardcoded into the main routine. If the system is

already connected to a network, it will proceed to scheduling mode. If not, the mote will call the “Network Join”

How? subroutine specified in Section 3.2 before entering scheduling mode.

5.2.8.2 Scheduling Mode

The scheduling mode of the main routine ensures that the sensor readings are taken at the correct time intervals as

specified by requirement A03. When a user alters the desired configuration parameters, the network manager will

interrupt this scheduling routine and update the parameters which are stored as a global variable in the main routine,

enabling requirement A04 to be met. The mote will then return to sleep and wait for the system to be ready to enter

sampling mode.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 44

5.2.8.3 Sampling Mode

Initially the mote will drive the sensor to take a reading by calling the “sample” subroutine outlined in Section

5.2.10Error! Reference source not found.. This subroutine writes a complete payload ready for sending to the

Dusty module for transmission in the WSN, ensuring requirements M07, M08 and A01 are met. The payload is then

sent to the Dusty module, ready for detection by the network manager. Once the payload has been dispatched, an

automated acknowledgement signal is sent back to the mote [5]. Upon receipt of the acknowledgement signal or an

ISR resulting from a new user-generated configuration file, control of the mote is handed back to the scheduling

mode.

5.2.9 Mote Join Routine

Figure 25 visualises the join routine responsible for connecting each individual mote to the network. All motes will

need to run the routine the first time they are powered up, and anytime they lose connection to the network in order

to satisfy requirement M05. Motes do not leave the network when they enter a scheduled sleep state [6]. This routine

can take anywhere from twenty seconds to tens of minutes, hence the power management of the mote was the main

driver of the design in order to meet requirements M04 and A06 [2, 7].

Figure 25: Mote Join Routine Logic

5.2.9.1 Duty Cycle Management

Initially the mote will begin looking for a network using a predefined search function [4]. If the mote finds a

network, it will move on to a synchronisation state. If not, the mote will sleep for a period of time before starting the

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 45

search again. Cumulative searching time can range from ten seconds to tens of minutes, depending on the join duty

cycle [20]/ This is the proportion of time a mote spends listening for a network versus sleeping. This is able to be

configured by the user in the range 0-255, with 255 representing a 100% duty cycle. This is implemented with an

autonomous function that the user has little control of other than increasing mote density by location or turning the

setting off explicitly at the manager.

It is important to note the mote will have a higher average current if a larger duty cycle is specified, however it will

also find the network quicker [6]. There is a trade-off that exists between the speed when a network is present and

how much energy is used when it isn’t. To help manage this, CSC has designed the following duty cycle

management process as seen in Figure 25:

• An initial threshold is set at thirty seconds, with a duty cycle of 100%.

• If a network has not been found after thirty seconds, the threshold is incremented to two minutes, and the

duty cycle is decreased to 80%.

• If no network has been found after two minutes, the threshold is incremented to ten minutes, and the duty

cycle is decreased to 50%.

The process will continue to decrease the duty cycle over time, thereby preserving battery life if there is no network

to be found. The values used in the example above are for reference only; these will be customised to the user’s

application.

Implementation of this duty cycle management process involves modifying the QSL libraries to expose the

duinoPRO API layer underneath. Due to time constraints, CSC was unable to develop a working prototype of this

subroutine.

5.2.9.2 Synchronisation

Once the mote has found the network, it enters a synchronisation stage where it sets its internal parameters to match

the network. The mote is only in the synchronisation state for a few seconds, and there are little to no configurable

parameters during this stage [6].

5.2.9.3 Message Exchange

Once the mote has synchronised to the network it is able to receive and send messages to other motes. A typical

mote-to-mote exchange takes approximately ten seconds, but can increase significantly based on two factors:

• Downstream bandwidth: how much data is able to be sent outwards from one mote [6].

• Number of motes: contention among many motes simultaneously trying to join compete for limited

resources, slowing down the joining process due to collisions between exchanges [6]

A larger duty cycle will enable one mote to join a network quickly, however it will also result in a large number of

collisions if a large number of motes are in use. For a large number of motes, a lower duty cycle will result in faster

joining time and less power consumption [6]. This was another reason CSC designed the duty cycle management

process outlined in Section 5.2.9.1.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 46

5.2.10 Sample – Payload Formation

The process of sampling data and forming an appropriate packet payload for transmission through the WSN has

been abstracted to a single function, denoted as “sample”. The process of sampling data and formatting it into packet

payloads is critical to achieving the functionality of the system in providing an unbroken data flow from sensor to

cloud database.

The “sample” function implemented for this task is called from the main mote routine (Section 5.2.8) when it is

determined that a sample should be procured. Construction of the entire payload, as per the conventions outlined in

Section 3.2, is managed by this function. Additionally, this function takes a single argument which allows the mote

main routine to specify which sampling mode to perform. The available options are listed in Table 16.

Table 16: Sampling mode options

Function argument Sampling mode

1 Sensor data only

2 Diagnostic data (battery voltage) only

3 Both sensor and diagnostic data

At the completion of its execution, the ‘sample’ function returns success or failure. On success, the full payload is

written to C uint8 array in global scope, ready for transmission. On failure this variable is cleared.

The implementation of this process utilises a layered approach, with the ‘sample’ function as the top layer. This is

illustrated in Figure 26. Function names are written in italics.

As shown, the ‘sample’ function sets the payload headers and then calls the appropriate sample functions in the next

layer given the sampling mode specified (Table 16). These data sampling functions manage data collection and write

their own field headers and values (data) to the payload directly. Data collection is mediated via the data acquisition

functions in the next layer, while writing the field header and reserving space for collected data is mediated by the

framing functions in that layer. Finally, low-level drivers are called by the data acquisition function for direct

hardware interfaces. This layer is largely outside the scope of this project, as discussed in Sections 5.2.11.2 and

5.2.11.3.

The design of this layered approach was developed with consideration of requirement M03. In particular, each layer

was allocated a well-defined scope and functions with similar purposes were implemented with similar structures as

far as practicable. This approach aids in development of a clear and maintainable code base (requirement M03).

The remainder of this section describes the implementation of the ‘sample’ function, data sampling functions and

framing functions. Data acquisition functions are described in Section 5.2.11.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 47

Figure 26: Layered approach to sampling

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 48

5.2.10.1 Sample function

As described above, the ‘sample’ function is responsible for managing data sampling and payload construction. This

function takes a single argument that specifies the type of sampling to undertake (Table 16). Its primary tasks are to

set the payload and dataload headers and call the appropriate sampling functions. Figure 27 illustrates the design.

As shown, the argument is first validated and the payload flushed. Next the payload header is set to 0, indicating that

it is of type ‘data’ (see table with options, config, data?). The current network timestamp is then stored in the

payload using sample_time(). Next, the sample_sensor and/or sample_diagnostic functions are called to collect the

relevant data and write this to the payload. A check is then implemented to ensure the payload does not exceed its

allowed length. Finally, the payload is marked as ready to send by setting its _ready_sent parameter to 1.

Integration tests of this function and its interaction with the data sampling functions have been completed

successfully as outlined in the testing document under test TU_SH/DpSample_SampleMain_Op (ref).

The checks mentioned herein are employed to ensure only valid data is transmitted, pursuant of requirement M07.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 49

Figure 27: Sample function flowchart

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 50

5.2.10.2 Data sampling

The data sampling layer sits immediately below sample and consists of three functions. Three functions are provided

in this layer for sampling different data, as listed in the first two columns of Table 17.

Table 17: Data sampling functions

Function Data sampled Data acquisition mechanism

sample_time Dust network

time

Send getParameter<time> command to Dusty module [21]

sample_sensor Sensor reading(s) sensor_read function (Section 5.2.11.3), which uses sensor-specific

duinoPRO libraries provided by ATAMO (with some modification)

sample_diagnostic duinoPRO

battery voltage

duinoPRO board enableVbatSense and getVbat methods [22]

Though each function samples different data, their structures are identical. A generic template of this is illustrated in

Figure 28. As shown, reserve_field is first called to reserve space in the payload for the data that will be collected

and write the correct field header to the payload. Second, data is acquired using the appropriate mechanism as listed

in column three of Table 17 and described in Section 5.2.11. Third, the data is checked for validity (requirement

M07). Finally, the data is written to the payload, in global scope. Full documentation for these functions is available

at (ref).

Unit tests of all three sampling functions have been completed successfully as outlined in the testing document

under tests TU_SH/DpSample_SampleTime_Op, TU_SH/DpSample_SampleTime_Op and

TU_SH/DpSample_SampleSens_Op (ref).

Requirement M08 is addressed by providing for 16-bit sensor resolution. However, it is the sensor driver function

that is responsible for procuring the data in the correct (up to 16-bit) format (Section 5.2.11.3).

Requirement A01 is met and exceeded here by providing functionality to obtain diagnostic data and incorporate it

into the payload (sample_diagnostic function). 32-bit precision is provided, exceeding the minimum limit of 16-bits

set in requirement A01.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 51

Figure 28: Data sampling functions general structure

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 52

5.2.10.3 Framing

The framing layer fulfils the role of reserving intervals within the payload for data to be written (ensuring conflict-

free writing) and forming and writing field headers at the beginning of the reserved intervals (ensuring data can be

interpreted downstream). Two functions are provided for this task as listed in Table 18 and illustrated in Figure 29

and Figure 28Figure 30.

Table 18: Framing layer functions

Function Process Return value

reserve_field Calls pack_field_header, then increments the payload pointer

to reserve the required amount space

Pointer to the start of the field

value in the payload

pack_field_header Generates the correct field header and writes this to the

payload

Length of field header

The payload pointer is a variable that tracks the next available position in the payload (which is a C uint8 array) that

has not yet been written to. As such, reserve_field reserves space in the payload array by incrementing this pointer

by the appropriate number of bytes. However, it also returns a pointer that points within that (reserved) interval to

the first entry where new data can be written. This return pointer is then used in data sampling functions for writing

data to the payload.

The pack_field_header function generates the correct field header given the field value length (in bytes) and type

(timestamp, sensor, diagnostic) based on certain rules. First, the field value length is encoded into the first three

bytes of the header by dividing it by two and storing it in the three MSBs of the field header as shown in Table 19.

At present, even-numbered lengths of 2-12 bytes are supported. However, this only requires six of the eight options

available, leaving room for expansion. Second, the type of field is encoded into the five LSBs of the field header

according the rules listed in Table 20. This set of rules allows data packets to be easily interpreted by downstream

applications, namely the network manager.

Table 19: Field header length indication

Field length (bytes) Field header

2 0b001XXXXX

4 0b010XXXXX

6 0b011XXXXX

8 0b100XXXXX

10 0b101XXXXX

12 0b110XXXXX

Other Invalid

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 53

Table 20: Field header type indication

Field type Field header

Timestamp 0bXXX11111

Diagnostic (battery voltage)

0bXXX11110

Sensor reading Sensor type code (SECTION)

Note that neither function in the framing layer directly accesses the payload variable. This was a design decision to

limit access rights to only the data sampling layer and the push function (SECTION).

Unit tests of both framing functions have been completed successfully as outlined in the testing document under

tests TU_SH/DpFrameHdr_PayloadHdr_Op and TU_SH/DpReserveField_Payload_Op (ref).

Figure 29: reserve_field function flowchart

Figure 30: pack_field_header function flowchart

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 54

5.2.11 Data Acquisition

Three data acquisition methods are required in the layered approach to sampling illustrated in Figure 26. This

section explains the methodology employed for each of these. Note, however, that the low-level driver tasks are

considered outside the scope of this project as explained in the respective sections below.

5.2.11.1 Timestamp

The Dusty module network timestamp is required as the first field in any payload sent by a mote. Obtaining this time

from the Dusty module is possible through a number of means. First, the TIMEn pin on the Dusty module may be

strobed, upon which the Dusty will send a time notification packet to the duinoPRO [21, p. 82]. This is most

accurate; however, the chosen method is to send the getParameter command to the Dusty module to request the

current time from it [21, p. 47]. The motivation for this is to free up all six IO pins on the duinoPRO for UART

Mode 2 communication with the Dusty module (see Section), which is more robust with regards to timing and more

energy-efficient [18].

Implementation of this functionality is via the QSL, which must be coded for the specific hardware used in this

project [23]. This has not yet been implemented.

5.2.11.2 duinoPRO Battery

Measurement of battery voltage on the duinoPRO is facilitated by duinoPRO firmware provided by ATAMO.

Specifically, the battery voltage can be queried using the getVbat member function of the duinoPRO class [22]. The

voltage is returned as a 32-bit floating point number. Note this is later subdivided at the bit level into four uint8

values for storing in the packet payload, as described in SECTION.

Before reading the duinoPRO battery voltage, the voltage sensing mechanism must be enabled [22]. This should

then be disabled once the battery voltage has been obtained so that the voltage sensing module does not consume

power needlessly.

The entire process of enabling battery voltage sensing, procuring a value and disabling sensing is managed within

the sample_diagnostic function discussed in Section 5.2.10.2. Note that the actual functions for reading and enabling

the battery voltage are considered “low-level drivers” (as per Section 5.2.10) and are therefore outside the scope of

the project. These functions will be treated using a ‘black box’ approach.

5.2.11.3 Sensor

In a similar way to how sampling has been abstracted and implemented using a layered approach (Section 5.2.10),

reading from the sensor has likewise been abstracted to a single function called “sensor_read” with multiple

software layers below it. The implementation of this approach is illustrated in Figure 31. As shown, sensor_read is

called by the data sampling function sample_sensor (Section 5.2.10.2). It is responsible for ensuring a sensor has

been configured and then selecting the appropriate sensor driver to run. The next layer consists of the sensor drivers

themselves. Below this is a layer which contains the sensor libraries, which are developed by ATAMO for

interfacing with specific sensors supported by the duinoPRO.

Note that the sensor-specific libraries are considered to be “low-level drivers” (as per Section 5.2.10) and are

therefore outside the scope of the project. The sensor driver layer will call functions from the sensor libraries;

however, modification and/or development of these libraries if the domain of ATAMO and outside the scope of this

project.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 55

Figure 31: Layered approach to sensor data reading

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 56

The structure of the sensor_read function is illustrated in sensor_read function. As shown, it first checks that sensor

configuration has been set. This prevents sensor_drive from running without a configured sensor, which could cause

an error. Next, the appropriate sensor driver is selected and called based on the type of sensor connected to the

suinoPRO. The same buffer passed to sensor_read is then passed on to the sensor driver. Finally, the return value of

the driver is checked. The buffer is reset to zero and a failure state recorded if it returned unsuccessfully (addressing

requirement M07).

Figure 32: sensor_read function

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 57

Sensor driver implementations are likely to vary significantly between sensors. However, as described above, the

general philosophy is to use ATAMO-developed sensor-specific libraries for the low-level tasks and simply call

high-level library functions for tasks such as: enabling sensor outputs, changing sensor mode and requesting sensor

readings.

One specific case has been implement for the LSM303D accelerometer/magnetometer sensor [24], which was

provided to CSC by ATAMO. Libraries were also provided for this sensor; however, they required some

modifications to be compatible with the current duinoPRO firmware [25]. The sensor driver function implemented

for this sensor is structured as follows:

1. Initiate communication with sensor

2. Exit sensor low power mode

3. Enable outputs and set output scales

4. Request data and write to buffer

5. Return sensor to low power mode

Of note is the use of the LSM303D’s low power mode, in which it consumes 1/300 of its normal operating power

[24]. The sensor will be in its low power mode at all times except while a sensor reading is being obtained.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 58

5.2.12 Sensor Configuration

To address requirement M11, CSC have designed a routine called sensor_config that automatically scans the module

spaces on a duinoPRO sensor-host for supported sensors and records pertinent configuration data in global state

variables. This approach greatly improves the portability of the system since an end user can attach any supported

sensor to any module site on a duinoPRO sensor-host and still use the same software on the duinoPRO.

The structure of this subroutine is illustrated in Figure 33. As shown, the default sensor configuration is checked

first. That is, the default sensor address is polled using the default serial communications mode. If an ‘expected

response’ is received, this is taken to mean that the default sensor is connected. The subroutine then records that a

sensor is configured (_sensor_conf_flag set to 1) and returns success, leaving the default values untouched.

If the expected (default) response is not received, the subroutine loops through all available module sites using both

I2C and SPI, polling each combination in turn. Responses are checked against a lookup table (LUT). This table

contains a list of ‘valid responses’ (to polling) and associated ‘type codes’ that uniquely identify the type of sensor

connected. These type codes are used by sensor_read to determine which sensor driver to call. If a valid response is

found, that address and type code are stored in global state variables _sensor_addr and _sensor_type, respectively. If

no supported sensor is found, sensor_config returns failure.

The default sensor configuration is an LSM303D accelerometer/magnetometer sensor [24] connected via SPI [26] at

module address three. Module three was selected by CSC since it is at a corner of the duinoPRO (accessible) and far

from the Dusty module (minimal EMI).

A critical impediment to this design is the limited memory of the duinoPRO (constraint C01). That is, there may be

insufficient memory to store a large number of sensor drivers on the duinoPRO simultaneously. An alternative

approach that would reduce the portability of the system (requirement M11) but avoid this constraint is to include

only one sensor driver in the duinoPRO build at compile time. With this approach, the user would potentially have

to install different software on each sensor-host in order to meet requirement M11 and support multiple sensor types.

At present, CSC has only implemented this alternative approach due to time constraints.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 59

Figure 33: sensor_config subroutine

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 60

5.2.13 Mote Configuration

A set of functions have been designed for managing mote configuration. These are responsible for setting default

configuration parameters when required and updating these whenever configuration packets are received from the

network manager. Configuration data is stored in C array in global scope (_conf). Four functions are included in this

design; their interactions with each other, the mote main routing and the configuration data array are illustrated in

Figure 34.

Figure 34: Configuration functions interactions

5.2.13.1 Configuration State Variables

Sensor mote configuration requires two state variables:

1) _config_set_flag: 0 by default (not configured), changed to 1 when config_default has successfully

initialised _config.

2) _conf: character array of configuration parameters. The list of configuration parameters is documented at

[27] and is expected to grow as the system design develops.

5.2.13.2 Configuration Lookup Table

The configuration lookup table is required for several configuration functions. It contains five columns of data for

each configuration parameter:

1) Field value length (number of bytes)

2) Maximum parameter value

3) Minimum parameter value

Note that the field header value for a given configuration parameter will be identical to its row number in the lookup

table and its index in the _conf array. Hence, the lookup table need only include the three values listed above.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 61

5.2.13.3 Configuration Set

The config_set function ensures configuration parameters are set, loading default values if required and parsing a

configuration packet if supplied. It will be called at start-up to initialise configuration parameters and whenever a

configuration packet is received from the network manager. Overall, this achieves requirement A03. It takes two

arguments:

1) A configuration payload sent from the network manager, or else a dummy variable, and

2) The length of the payload in bytes, or zero if the dummy variable was passed.

This function first checks its arguments and device state. If the dummy variable and zero are provided as arguments

or _config_set_flag = 0, config_default is called (see Section 5.2.13.5). If length is greater than zero, config_set

parses the configuration payload, updating each configuration parameter contained therein. It is assumed that the

calling function has already determined that the payload is of the correct type (i.e. configuration).

However, if any field header is invalid (not found in lookup table (LUT)), then config_set returns failure irrespective

of how much of the payload it has parsed. This is necessary because the function would not know how many bytes

to ‘skip’ for the Field Value of the invalid field and therefore could not proceed.

At termination, the function returns the number of parameters in the payload it was unable to update.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 62

Figure 35: config_set function

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 63

5.2.13.4 Configuration Parameter Set

The config_param_set function updates an individual configuration parameter. It takes two arguments:

1) Field Header (type)

2) Field Value (value)

Before assignment, the provided parameter value is checked against its minimum and maximum values in the

configuration lookup table. The function is illustrated in Figure 36.

Figure 36: config_param_set function

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 64

5.2.13.5 Other Configuration Functions

In addition to the above, two other configuration functions are required:

1) config_default: this function takes no arguments and sets configuration parameter values to default values

that are hard-coded into the program.

2) config_param_get_cur: this function takes a field header as its argument and returns the current value of the

associates parameter.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 65

5.2.14 Network Manager and Gateway

This section discusses the key design decision made in the design of the network manager and gateway device.

5.2.14.1 Embedded Network Manager

In a SmartMesh IP network there are two choices for the Network Manager. They are the Embedded Network

Manager (EManager) and the Virtual manager (VManager) [20]. The Embedded Manager combines the network

management functions and access point onto a single chip [20]. The virtual manager communicates with many

separate access point motes via an x86 server [20]. The virtual manager has the advantage of supporting thousands

of motes where the embedded manager can support up to 100. The VManager is significantly more complicated to

set up. Requirement A02 sets a target of only 5 motes to connect to the network manager. Due to the associated

time constraints, the implementation of VManager (Requirement A09) was given low priority by the client the

embedded manager was chosen to develop the first prototype.

Initially the DC2274A-A Network Manager dongle will be used however in the future a dusty module may be

flashed with the EManager Firmware and used instead [28]. Currently communication have been established

between the DC2274A-A and a laptop.

5.2.14.2 Gateway Application

The gateway application will run off a separate device which communicates with the manager over the serial

application programming interface (API) [29]. The API functions using commands and notifications. Commands are

requests sent from the gateway device to the manger, and notifications are messages from the manager to the

gateway containing useful information from the SmartMesh IP network [29]. The application will be developed in

Python 2.7 using and the SmartMesh SDK which fully implements the API in Python [30]. The SDK example

projects will also aid to speed up development time. Currently the application is being developed for a laptop but

any device running the SmartMesh SDK in Python will can run the application.

The main functions of the application are to:

• Process data from the network and upload it to the cloud to meet M06

• Update mote Configuration as instructed from the user to meet A03

• Log key network events that are sent from the manager

A flow diagram of the gateway application logic is shown in Figure 37.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 66

Figure 37: Gateway Logic Diagram

Firstly the application will establish a connection with the network manager and the cloud server. Next it will send

the “subscribe” command over the API to control which notifications it must acknowledge [29]. If any of the

commands that were subscribed are not acknowledged the connection will be restarted.

Next the application will listen to the API for notifications from the manager and listen to the cloud server and/or the

command line interface (CLI) for commands from the user. When a notification is received the system will first read

the packet payload length from the API Header. It will then read the first byte of the payload which indicates the

command type. This will then control which routine is run to correctly process the data. Next it will loop back and

listen to the API for another notification. In parallel the application will listen for commands from the user. The

logic for this process follows an analogous process.

Currently the commands from the user were delayed due to time constraints. The connection between the laptop and

the embedded manager has been established and it was confirmed that the application has easy access to the payload

data and mac address. This confirms that the method of process incoming data described in the next section will

work. The function to process incoming data is partly coded but is yet to be tested as this stage of the design the

motes are yet to send any data to the network manager. The designers of the front end have developed and tested a

python function to upload the processed data to the cloud database.

5.2.14.3 Upload Mote Data Routine

This function takes the incoming data notification and unpacks the data before sending it to the cloud through the

boto3 python package. A diagram of the logic for this process can be found in Figure 38.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 67

Figure 38: Process and Upload Mote Data

The programs first step is to calculate the number of bytes of data in the payload. This is found by subtracting the

amounts of bytes taken up by notification type (1), timestamp (12), MAC address (8), source port (2), and

destination port (2) which are placed at the front of a notification payload from the payload length (L) found in the

API header [29]. Then the program creates a blank dictionary that data from is stored into. The program ignores the

first byte as the notification type is already known, and then ignores the next 12 bytes. The MAC address is then

read from the next 8 bytes to identify the mote which sent the data. This location is added as a field to the dictionary.

The next four bytes are skipped.

Following this the program runs through a loop which extracts data and adds it to the dictionary. Each loop first

examines one byte to determine the type of data it is reading. This type provides a label for the data and the length of

the data in bytes (B). The program then reads the next B bytes and uses the label to populate a new field in the

dictionary. At the end of each loop the variable i is increased by (B+1). The loop will end when i reaches N

indicating that then end of the data has been reached.

The application is then left with a Python Dictionary which it must upload to the cloud. The cloud sub-team have

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 68

stated that the Node-Red application will be implemented to manage the flow of data into their sub-system. This will

be achieved using a free MQTT broker which can be accessed by Node-Red [31]. This approach is based on an

example in the SmartMesh SDK [32].

5.2.14.4 Update Configuration Routine

The routine is called if the user sends a command to the gateway stating a specific change to one (or many)

configuration parameters of the motes. A flow diagram demonstrating the logic of this process is shown in Figure 39.

Firstly, the program calculates the number of parameters that need to be updated. It then sets the first byte of the

packet payload to indicate that it is a configuration packet. This indication is used by receiving motes to initiate their

update configuration sub-routine. The program then goes through a loop until all parameters are added to the packet.

Finally, the configuration data is sent out to all motes using the “send data” command over the API. The packet is

sent to all motes by setting the address to 0xFFFFFFFFFFFFFFFF when calling the “send data” data command [29].

At this stage this routine is only a plan for how the team would do this task. The team has not yet had the

opportunity to implement or test it.

Figure 39: Update Configuration Routine

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 69

5.3 Front-End Design

In achieving elevated data visualisations and remote monitorisation, CSC has integrated cloud services into the

WSN design illustrated by the flow diagram in Figure 40. The cloud database serves as a convenient remote storage

system which interfaces between the embedded manager and the web application [9, 33]. The successful integration

of the cloud database is contingent on its ability to conveniently, flexibly and reliably store and query data. From the

requirements analysis it was determined that the embedded manager required the cloud database to store timestamps,

unique mote identification numbers, sensor data and diagnostic data [34]. The design of the cloud integration and

web application are deeply intertwined and are aimed to optimise the quality benchmarks of the WSN whilst

meeting the prioritised requirements.

Figure 40: Front-End Intrasystem Integration

5.3.1 Cloud Integration

Upon the successful data warehousing from the WSN, the network manager will store its datasets into a NoSQL

cloud database. CSC has chosen AWS as the cloud service provider due to its elevated support in developing basic

applications when compared to International Business Machines (IBM) Watson. In utilising the AWS resources,

CSC has chosen Amazon DynamoDB for its ease of deployment, schema-less characteristics and horizontal scaling.

5.3.2 Choice of Cloud Service Provider

To select a suitable Cloud Service Provider (CSP), CSC conducted an analysis on the client’s preferred solutions –

IBM Watson and AWS [9, 33]. In analysing the cloud-integration processes, it was concluded that IBM Watson and

AWS had the capacity to effectively interface with the embedded manager. Enabling the WSN to store information

into the cloud database near real-time. Thus, partially satisfying the relevant mandatory requirements dictating

compulsory internet/database connectivity (Requirement M06) and data timeliness (Requirement M09). The

comprehensive engineering support provided by IBM and AWS also bolster the design strategy facilitating for the

concise documentation requirement (M03) [35, 36].

In optimising the system costs, it was determined that CSP expenditures were heavily correlated to the solutions

architecture. Evidently, CSC asserted that minimalistic cloud solutions would minimise system costs (Requirement

A07) as superfluous functionalities would result in additional expenditures. Therefore, the main determinant in the

choice of CSP was ultimately based upon their perceived level of necessity and synergies to the WSN [35, 36].

IBM Watson is a cloud computing platform specifically designed to replicate cognitive abilities using machine

learning [36]. It develops artificial intelligence by storing information into a managed NoSQL JSON database [36,

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 70

37]. Although the IBM Watson services are beneficial in general IoT environments [36], the additional benefits are

non-essential as it does not improve the client’s benchmarks of quality. Therefore, CSC concluded that the IBM

Watson services was unnecessary convoluted for the client’s intended purpose.

In comparison, AWS’s myriad of cloud solutions facilitated for development of various applications throughout the

spectrum. As a result, AWS solutions can be easily designed to meet varying levels of business needs as the

company grows [35, 38]. This inherently reflects AWS’s flexibility, scalability (Requirement A10) and ease of

deployment in cloud computing design [35]. Based on these differences, CSC asserted that AWS’s foundations were

more suitable for the WSN. This decision has been justified by AWS’s superior aggregate rating of 86.5 as seen

from the weighted decision matrix from Table 21.

Table 21: CSP Weighted Decision Matrix

Criteria Weighting
AWS

Score

AWS

Weighted

Score

IBM Watson

Score

IBM Watson

Weighted Score

Suitability 30 80 24 70 21.0

Development

Costs

15 90 13.5 90 13.5

Documentation 15 90 13.5 90 13.5

Flexibility 15 80 12.0 70 10.5

Support 15 90 13.5 90 13.5

Modularity 10 100 10 70 7.00

Aggregate Rating 86.5 79.0

5.3.3 Choice of Database

CSC has recognised that the cloud’s ability to store and process large datasets as a critical characteristic since the

supply of data is currently growing at an unprecedented rate. Increasing in volume, variety, variability and velocity,

it has brought forth a phenomenon called ‘Big Data’ [39, 40]. It was recognised that the IoT based WSN would

likely encounter the challenges of ‘Big Data’.

Through a comprehensive analysis, it was determined that both relational and unstructured databases could

sufficiently meet the relevant mandatory requirements as they both had the capability to timely upload their datasets

(Requirement M06, requirement M09). Therefore, CSC investigated possible solutions to maximise the performance

and quality of the database.

In analysing the aspirational requirements, CSC highlighted the importance of the practical and flexible databases.

In comparing relational and unstructured databases, it was clear NoSQL databases were easier to manage and

quicker to deploy which is derived from its schema-less characteristics. In addition, NoSQL databases also

facilitates for faster data transactions between the cloud repository, embedded manager and web application

(Requirement M06).

Furthermore, the schema-less characteristics of NoSQL databases allows new datasets to be easily stored since there

are no schema limitations, satisfying the aspirational requirement of configuration flexibility (Requirement A03).

The holistic decision to incorporate NoSQL database into the cloud architecture has been justified by its superior

aggregate rating of 80 from the weighted decision matrix in Table 22.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 71

Table 22: Database Weighted Decision Matrix

Criteria Weighting
NoSQL

Database

NoSQL

Database

Weighted

Score

Relational

Database

Unstructured

Database

Weighted Score

Configuration

Flexibility

60 90 54 60 36

System Costs 30 60 18 60 18

Scalability 10 80 8.0 70 7.0

Aggregate Rating 80 61

5.3.4 Database Design

Naturally the selection of AWS and the NoSQL database has resulted in the implementation of Amazon DynamoDB,

AWS’s multipurpose NoSQL database for IoT systems [35]. Amazon DynamoDB has been purposely designed to

be “always writable” which translates to a system that minimises data losses [41]. Historically this has been

substantially effective in web-applications which require data aggregates [35]. CSC has asserted that the “always

writable” functionality is an extremely valuable asset to the client as it reflects on the aspirational requirement for

scalability (Requirement A10) [41].

In utilising Amazon DynamoDB for the WSN, CSC has created a NoSQL database comprised of two tables storing

data samples and configuration settings respectively. CSC has named these tables “Sensor Data Table” and

“Configuration Data Table” respectively.

DynamoDB operates on a simplistic model which is comprised of three main components – tables, items and

attributes. The DynamoDB table refers to the overarching collection of information where all the of the respective

datasets are stored. In each of these tables, there are multiple unique items representing a group of attributes. These

attributes are fundamental data elements and cannot be broken down further [35] [42]. DynamoDB’s simplistic

model for data storage has significant advantages as it functions on the premise of storing ad-hoc dictionaries.

Consequently, this allows the client to freely change the contents of their data uploads (Requirement A03). This

translates to a reduction in system costs as it reduces database management costs (Requirement A07).

When creating the database, it is paramount to specify a primary key. The primary key is a unique identifier which is

used to index the data collection. Due to the client’s intention to query data based on mote identification numbers

and timestamps, CSC has diligently incorporated a composite primary key for both the “Sensor Data Table” and

“Configuration Data Table” [34]. In using composite keys, stored data is indexed based on the values of the partition

key and sorted by its sort key which is depicted in Figure 41.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 72

Figure 41: Composite Keys

Since the schema-less characteristics of DynamoDB presents a trade-off between sagacious flexibility in data writes

and query ability, it is paramount to optimise the configurable parameters [35] [42]. Therefore, the fidelity of the

database is highly correlated to the effective selection of the composite key. Intuitively since DynamoDB does not

support complex queries, it is imperative to ensure that the high-volume queries are as simplistic as possible. CSC

has postulated that the client will mainly use the “Sensor Data Table” to service a web application requiring queries

of the most recent sensor data based on mote identification numbers. Therefore, the Sensor Data Table has been

indexed by mote identification numbers (partition key) and sorted (sort key) by timestamps.

The deployment of the “Sensor Data Table” will store sensor data attributes in item schemas and is expected to

easily cope with varying types of datasets such as temperature, velocity, acceleration and position (Requirement

A03). The “Sensor Data Table” repository has been visualised in Figure 42 and displays DynamoDB’s composition

of composite keys, items and attributes.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 73

Figure 42: Sensor Data Table Repository

From CSC’s analysis of Amazon DynamoDB’s storing methods it was concluded that the “Sensor Data Table” will

be rapidly populated therefore adversely effecting query speeds. To improve database performance, CSC has

proposed a ‘store and dump’ procedure which redistributes low-value data into bulkier, cheaper data warehouses

such Amazon Simple Storage Service [35]. This will effectively allow the client to preserve the entirety of their data

whilst facilitating for reasonable query times. Typically, time-series databases often incur high data transactions for

the most-recent datasets whilst rarely using datasets from the past [35]. Therefore, CSC will ‘dump’ the ‘old’

datasets from the Sensor Data Table on an ad-hoc basis, thus optimising processing time.

The deployment of the ‘store and dump’ procedures incur additional project constraints which arises from

unintentionally partitioning important datasets. Through client consultations, CSC determined that the configuration

data could be accidentally partitioned (dumped) due to the system’s infrequent configuration writes [34]. CSC has

resolved this issue by deploying the “Configuration Data Table”. Similarly, CSC has chosen to implement a

composite primary key composed of a mote identification number partition key and a timestamp sort key to optimise

the query performance of the system. The “Configuration Data Table” repository has been visualised in Figure 43

and is intended to store respective information of location and sampling rates [34].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 74

Figure 43: Configuration Data Table Repository

5.3.5 Web Application Framework

A web application framework (WAF) is a software skeleton intended to support the development and maintenance

of web applications [44]. This is through automating the overhead associated with common activities performed in

web development, such as providing libraries for database access, template frameworks, and session management.

The chosen WAF heavily dictates the implementation and design of the web application itself. As different

frameworks are often written in different programming languages, it is also difficult to transition between

frameworks post-implementation [44], emphasising the importance of an initial sagacious choice.

The most popular and well supported WAFs are Django [45], Ruby on Rails [46], and Google App Engine [47].

Although comparable, there are distinct deviations which are relevant to the selection of the ideal WAF for this

project. The primary requirements pertinent to the selection of a WAF are M03 (design strategy), A08 (amplified

user experience), as well as integration considerations with the chosen cloud database. In the context of WAFs these

can be translated into the framework’s documentation, configurability, and integration. Detailed documentation

enables a clearer design strategy. This is facilitated through CSC’s increased comprehension of the software tools

being used. In addition, it eases client maintenance to the user interface in the absence of CSC post-project.

Configurability permits CSC to provide an amplified user experience through providing the means to precisely

design the user interface. Integration with the cloud database is an additional consideration, as the web application

must align with the rest of the design.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 75

A weighted decision matrix has been used to aid design decisions (Table 23). Weightings sum to 1; criteria is ranked

from 0 (lowest) to 100 (highest) for each of the WAF. Weighting values are derived from the project requirements;

ranking is defined through consultation with the literature.

Table 23: WAF Weighted Decision Matrix

Criteria Weighting Django Ruby on Rails
Google App

Engine

Documentation 0.5 70 80 60

Configurability 0.2 80 70 60

Integration 0.3 90 40 50

Weighted Sum 78 66 57

CSC has discerned that Django is the ideal choice for the WAF. Although there is slightly less documentation than

Ruby on Rails, there is still ample information available [48]. In addition, Django outperforms Ruby on Rails and

Google App Engine with respect to configurability and integration. Django integrates with the chosen database

(AWS) [49, 50] in addition to having a high level of configurability [45]. Hence Django will be chosen as CSC’s

WAF.

5.3.6 Interface Design

From Table 23 CSC discerned that Django is the ideal choice for the WAF. Although there is slightly less

documentation, a crucial component of the web application is the visual design of the GUI [51]. The GUI pertains to

requirements M10 (client application), A05 (authentication), and A08 (amplified user experience). The GUI must

achieve a balance between simplicity and control – there must be enough control for the user to achieve what they

want from the interface, without the unnecessary clutter of additional controls. Non-essential functionality

superfluously wastes resources while being visually displeasing to the user. CSC has designed the user-interface

under the guidance of these key principles.

Users should only be asked to authenticate in exchange for value, and sign-in should be delayed for as long as

practicable to avoid unnecessarily obstructing the user [52]. As this web application acts as the interface to

potentially confidential and/or commercially sensitive information, users must first authenticate themselves before

being granted any further access to the application. When a user accesses the client’s main web domain, they are

greeted with the interface shown in Figure 44. The simplicity of the login page is intentional - the sign-in

verification process should be quick and discreet to minimise its detraction from the application [51, 52]. Best

practices for a login screen have been employed [51, 52]: the layout is centred; elements are aligned; and all

unnecessary noise has been removed. The area for user input has a shadow and slight contrast in colour to the web

page’s background, employed to subtly draw the user’s attention to the pertinent area for authentication. A username

and password method for authentication was chosen to align with the client’s requirements (Requirement A05). The

inputs for the username and password have been pre-populated with the slightly transparent text “Username” and

“Password” - which disappear when the user beings typing in these areas. This communicates to the user the correct

location to input their credentials while minimising the clutter of the interface.

.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 76

Figure 44: Login Screen

Hypertext is text on a screen that has references (or hyperlinks) to other text on different web pages that the user can

immediately access via clicking on this text [51]. Hypertext has been marked in blue – the de-facto standard for

hypertext [53] – to appeal to the user’s intuition garnered through previous experience browsing the world wide web.

The exception to this is the “Sign In” link, which has instead opted for an aesthetically appealing button to attract the

user’s attention (Requirement A08). This use of a “Sign In” button is standard amongst login screens [52]; as

signing in is the primary functionality of login screen, the larger button is used to draw attention to an area of the

screen frequented when accessing the page. A shadow will appear behind the button when hovered over by the user

- further communicating its interactivity and adding to the aesthetics of the overall web page design (Requirement

A08) [52]. If a user attempts to sign in with credentials that do not match those of existing username and password

combination in the database, they receive an error message “The username and/or password you specified are not

correct.” (Figure 45). Although the authentication system is intelligent enough to determine which of these two

fields is incorrect, it intentionally does not specify which for security reasons. Giving insight into the incorrect field

significantly reduces the sample space of possible username and password combinations, increasing the probability

of granting access to an unauthenticated user [54]. The error message uses red font to render it visually distinctive,

and the wording was chosen to be both helpful and (appropriately) precise [51].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 77

Figure 45: Login Screen Error Message

Once authenticated, users are immediately permitted to access the web application (Figure 46). The upper portion of

the page has been reserved to display the logo and other identification information pertinent to the user, as desired

by the client (note that the client’s logo has been used for demonstration purposes). The section beneath this is

comprised of four primary elements that facilitate interaction with the time-series data display: the time resolution

buttons; range slider; legend; and toolbar. These elements provide the user with a rich level of interactivity while

maintaining an intuitive and simplistic design.

Figure 46: Web Application Post-Login Screen

The time resolution buttons allow the user to alter the time period across which data is displayed through clicking a

button corresponding to a fixed time period - 1 hour, 1 day, 5 days, 1 month, 6 months, year to date, 1 year, and All.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 78

The time periods were chosen based on the client’s requirements for hourly, daily, monthly, and yearly display of

data; the buttons provide convenience and simplicity for a user in selecting a desired time period. The time

resolution may also be altered using the range slider residing underneath the x-axis. This allows for a more specific

level of granularity in the display of data if desired. The portion of the data currently not displayed on the graph is

darkened in the range slider to communicate to the user the currently highlighted section. The start and end date of

the displayed data may be altered through clicking and dragging on the left and right range slider handles

respectively; the slider enables the user to alter the axis to choose a custom start and end date. Clicking and dragging

on the currently highlighted section of the range slider allows the user to keep the time period constant while shifting

through the displayed data (Figure 47, Figure 48)

Figure 47: Range Slider Illustration: Initial Selection

Figure 48: Range Slider Illustration: Altering displayed data

The legend on the right hand side of the graph matches each trace’s colour with its appropriate label. This legend

offers a level of interactivity: the user is able to click an individual item in the legend to select/deselect the

appropriate trace. Only the selected traces will be displayed on the graph. By double clicking an item in the legend,

all other items will be deselected with only the chosen trace displayed on the graph - providing the user the means to

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 79

easily isolate the data from a single mote. As this double clicking behaviour is not necessarily intuitive, a

notification reading “Double click on legend to isolate individual trace” will appear when first clicking on the

legend (Figure 49). To avoid unnecessarily obscuring the interface, subsequent clicks will not refresh this

notification. The motes that are currently deselected will appear “greyed out” on the legend (see “Mote 1” in Figure

49) - providing the user with an intuitive signal as to which items are currently being plotted.

Figure 49: Legend Notification

When a legend item is selected/deselected, the range of the y-axis will dynamically adjust to more accurately fit the

data that is desired for display (i.e. the remaining selected traces after a user has selected/deselected a legend item).

Figure 50 depicts the graph with both “Mote 1” and “Mote 2” selected; Figure 51 depicts the graph immediately

after deselecting “Mote 2”. It can be observed that the y-axis has dynamically scaled its range from 20-70 in Figure

50 to 22-28 in Figure 51. This auto scaling significantly increases the readability of the interface (Requirement A05),

facilitating more granular insights into the displayed data. Note that the user is not required to refresh the page to

realise this functionality.

Figure 50: Legend illustration - Both Motes selected

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 80

Figure 51: Legend illustration - Single Mote selected

The toolbar (Figure 52) provides the user with extended functionality in their interactive with the interface.

Hovering over any of the icons will indicate the specific tools functionality. The tools allow the user to download

the plot as an image, set zoom, zoom in or out, autoscale, pan, reset axis, toggle spike lines, show closest data on

hover, or compare data on hover.

Figure 52: Graph Toolbar

The ‘set zoom’ allows the user to highlight a particular area of interest displayed on the graph by clicking and

dragging across the pertinent area (Figure 53). After releasing the pointer, the interface will then adjust the range of

the x-axis to match the area highlighted (Figure 54). This interaction provides another means for the user to easily

pinpoint a specific section of the graph for further analysis.

Figure 53: Set Zoom Illustration - Click and drag

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 81

Figure 54: Set Zoom Illustration - Result

The ‘Toggle Spike Lines’ tool provides the user with a visual guide as to a data point’s x and y position. When

enabled, hovering over a data point will produce dashed lines running from the data point to the x and y axis (Figure

55). This information can be made further verbose through selecting the “Show closest data on hover” tool, which

will display verbose identification of a data point when hovered over - (“Feb 2, 2017, 26.61”) Mote 1 in Figure 55.

Alternatively, enabling the “Compare data on hover” tool will show identification information for all selected traces

when hovering over a particular time period on the graph (Figure 50).

Figure 55: Toggle Spikes Enabled

The aforementioned details describing the user interface demonstrate CSC’s achievement of the requirements M10

(client application), A05 (authentication), and A08 (amplified user experience).

5.3.7 Deployment

Software deployment refers to the multifarious activities that facilitate a software system’s availability for use [55].

This includes release, adaption, capacity provisioning, scaling, and system maintenance. Deployment pertains to

requirements M03 (design strategy), A08 (amplified user experience), and A10 (database scalability); deployment is

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 82

heavily contingent on the chosen cloud database. Software designed to ease capacity provisioning and scaling is

often specific to the cloud infrastructure – frequently offered as an on-sell from the database supplier [49, 56].

Although other software deployment is still possible, the added complexity and lack of supporting documentation

does not align with requirement M03. To bolster this, AWS offers a deployment service – Elastic Beanstalk – which

handles the details of capacity provisioning, load balancing, scaling, and application health monitoring [50]. With

amply documentation, this service meets requirements M03, A08 and A10.

A similar software offered by AWS is known as CloudFormation [57]. Albeit well documented, it requires an

advanced knowledge of AWS infrastructure to maintain, and takes a significantly longer time to deploy [50, 57].

Hence to prevent the project becoming protracted as well as ease upkeep post-project, Elastic Beanstalk is chosen to

facilitate software deployment of the web application.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 83

6 Testing
The approach taken to testing in this project is based on three types of testing

1. Unit testing,

2. Integration tests, and

3. System tests

Unit tests are defined as tests of discrete, non-subdividable design elements. Integration tests cover situations where

more than one unit, and in particular interfaces between units, are being tested. System tests encompass an entire

system with multiple units and interfaces.

Note that in the case of testing Embedded Design components, a testing suite has been built into the duinoPRO

software. Tests can be selectively enabled via macros at the user’s discretion at build time. This was chosen to

ensure the compiled code is sufficiently small to fit within the duinoPRO’s limited memory (constraint C01).

Due to time constraints, no system tests were completed. However, a significant amount of unit testing has been

successfully completed, with some components of the design progressing as far as integration testing. All tests

carried out for this project are fully recorded in the ELEC5552 Team 14 Testing Document [57]. The following

sections give a brief overview of the testing that has been carried out and some further testing plans.

6.1 Unit Tests

Unit testing of several components of the overall system has been successfully completed. These tests are

summarised in Table 24.

Table 24: Unit Tests Summary

System Component Relevant test(s) Test outcome(s)

Pin mapping for Dusty-duinoPRO TU_SH/DpUart_External_Op

TU_SH/DnJoin_Cli_Op

Passed

Passed

Mote join routine TU_SH/DnJoin_Cli_Op Passed

Sampling TU_SH/DpFrameHdr_PayloadHdr_Op

TU_SH/DpReserveField_Payload_Op

TU_SH/DpSample_SampleTime_Op

TU_SH/DpSample_SampleDiag_Op

TU_SH/DpSample_SampleSens_Op

Passed

Passed

Passed

Passed

Passed

Network manager & gateway TU_NM/WSNHandshake_APIConnNoSerialMux_Op Passed

Database TU_DB/Put_Exclusive_Op

TU_DB/Get_Exclusive_Op

Passed

Passed

Database to Web Application

interface

TU_CI/DataTransfer_S3_Op

Passed

Web Application/GUI TU_SH/ Load_Webpage_Op

TU_SH/User_Authenticate_Op

Passed

Other – development tools and

checks

TU_SH/DpSys_FlashBlink_Op

TU_SH/DnSys_HwareCheck_Op

Passed

Passed

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 84

For the Embedded Design, unit testing is achieved with an abstract class, Test-Case, that exposes the virtual method

“run”. Developers implement their unit-test by deriving from the Test-Case class and implement the run method as

required. Standardised success and failure routines are provided in the abstract class, and the option to stop on

success or continue is provided. Some units (most notably, the Dusty/WSN related units) cannot be tested ‘as units’

and are only tested in the integration phase.

6.2 Integration Testing

Limited integration testing has been completed for certain parts of the overall system. These are listed in Table 25.

Table 25: Integration Tests Summary

System Component(s) Relevant test(s) Test outcome(s)

Dusty Module, duinoPRO – Mote join routine TI_SH-NM/DnJoin_Mode4_Op Passed

Sampling TI_SH/DpSample_SampleMain_Op Passed

Database to Web Application interface TI_DB-WA/Connection_Mock_Op Passed

In addition to these completed integration tests, the following tests listed in Table 26 are recommended for testing

during further development of the system. Note that Business-As-Usual (BAU) cases are only mentioned if non-

trivial outcomes are expected.

Table 26: Integration Test Plan

Unit of

Concern

Case Expected Outcomes

WSN-Join

(Requires

Network

Manager)

Network present, on-start attempt (BAU) BAU

Network present, but connection fell mid-

operation, system to attempt re-join

BAU + Check scheduler is capable of disrupting

routines to prioritize re-join

Network present, connection fell during

sleep, system to attempt re-join

BAU + Check scheduler is capable of detecting

disconnect post-sleep

Network not present, (on-start attempt &

post-disconnect)

Check system locks in joining state and does not

release until successful join. Further check

system follows energy optimization routine

(increased wait-time between attempts)

WSN-Push

(Requires

Network

Manager)

Connected, periodic sample (BAU) BAU

Connected, NACK Check that scheduler prevents lock with timeout.

Check re-attempt behaviour.

Disconnected Check system locks into joining state and does

not push.

Post-Disconnected recovery Check system correctly samples new data (and

does not re-attempt to sample old, passed data)

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 85

Unit of

Concern

Case Expected Outcomes

Sensor-Read

(Requires

sensor)

BAU Check accuracy

Input validation Check input buffers do not cause system fault.

Check recovery/handling for future samples.

Incorrect driver Check system enters critical error state, and

network is notified

Config-Set

(Requires

Network

Manager)

Bad payload; incorrect field description

causing the remaining portion of payload to

be un-parsable

Check configuration is not updated if a bad

payload is given

Input validation Check configuration prevents bad inputs for all

parameters (as specified in LUT). Check

configuration is not set out-of-range

SYS-Sleep

BAU Check power consumption, accuracy of sleep

time, shutdown time.

Sleep-guard lock timeout (waiting on ACK,

configuration handling)

Check sleep guard does not lock system for

certain scenarios after configured anti-lock

timeout expires.

Sleep-guard lock (BAU) Check sleep guard set by external unit prevents

system from sleeping

SYS-Wake

BAU Check recovery time; check all units are

responsive

Failure on one or more units (simulated with

intervention)

Check system recognition of failure and re-

attempt

6.3 System testing

As mentioned, no system testing has been completed due to time constraints. However, in completing potential

future system tests, an end-to-end approach should be used, as the integration tests will cover all cases of

failure/operation. Key to the end-to-end test is ensuring the two primary transactions from Section 0 can be achieved.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 86

6.4 Testing Summary

In summary, Table 27 lists the various components of the system and lists their status in regard to design,

implementation and testing, as well as the relevant requirements addressed in testing these.

Table 27: Development & Testing Summary

System Component Designed Implemented Tested Requirements

Pin mapping for Dusty-duinoPRO ✓ Partial Partial M05, M12, A02

Mote state management ✓   M04, A04, A06

Mote sleep management ✓   M04, A06

Mote main routine ✓   M04, M07, A04, A06

Mote join routine ✓ Partial Partial M05, A02

Sampling ✓ ✓ ✓ M07, M08

Data acquisition ✓ ✓  M07, M11, A01

Sensor configuration ✓  A04

Mote configuration ✓   A03, A04

Mote to Network Manager interface Partial   M05, M09, A02

Network manager & gateway ✓ Partial Partial M05, M06, M08, A02

Network Manager to Database interface ✓   M06, M09

Database ✓ ✓ ✓ M06, A10

Database to Web Application interface ✓ ✓ ✓ M09, M10

Web Application/GUI ✓ ✓ ✓ M10, A05, A08

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 87

7 Resources
Due to the complex nature of the architecture, CSC has leveraged a multitude of resources to assist in the design and

implementation of the project. To maintain transparency and quality assurance, the team leveraged GitHub to

establish a version control system for all documents used throughout the project [58].

7.1 Hardware
PCB design has been achieved using EagleCAD, enabling the team to produce a schematic and layout that aligns

with electrical protocols and manufacturing standards [59]. EagleCAD was chosen due to the team's previous

experience with the software and the portability of the final design. EasyEDA, a web-based electronic design

automation tool, was selected for the fabrication of the PCB due to its ease of use and competitive pricing [60].

7.2 Network
The team has selected a DC2274A-A device to act as the Network Manager. The device was chosen for to its

compatibility with the Smartmesh IP that our wireless sensor network implements, as well as the portability

associated with a bidirectional USB connection to the gateway [61]. A Raspberry Pi will act as the gateway between

the network manager and the database due to its compact size and cost.

7.3 Front End

CSC has selected AWS as the cloud services platform for the front-office portion of the project. AWS promotes

compatibility with many software applications that are able to leverage for cloud-based tasks [62]. Implementation

of the database will be achieved using DynamoDB, Amazon's NoSQL database service that handles the routing of

data requests, enabling the user to scale the dataset while still maintaining speed and reliability [63]. Development of

the GUI will be achieved by utilising AWS Elastic Beanstalk, enabling simple management of individual

applications in the AWS Cloud without having to interface the infrastructure behind each application [64].

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 88

8 Risks & Contingencies

Risk and contingency management includes identifying, controlling, and mitigating potential risks and contingencies

[65]. Risk is an inevitable part of all stages of the project lifecycle, although proper management in the planning

phase can minimise risk frequency and impact. In line with this, CSC performed a risk assessment in the form of a

risk register, identifying the top five risks to the project (Table 30 & Table 31).

Multiplying the risk likelihood and consequence gives a single metric by which to evaluate the significance of each

risk, shown in Table 28.

Table 28: Risk Ranking Matrix

Four levels of risk have been used in the risk assessment, outlined in Table 29.

Table 29: Risk Rank Defined

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 89

T
a

b
le

 3
0

:
R

is
k

R
eg

is
te

r
P

a
rt

 1

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 90

T
a

b
le

 3
1

:
R

is
k

R
eg

is
te

r
P

a
rt

 2

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 91

9 Design Outputs
CSC has contributed to the WSN’s proof of concept in a multi-faceted number of ways. This has encompassed

prototyping a functional network and transparent documentation of systematic approaches in extending battery life.

Design Outputs Purpose Stored

Final Design Report Clearly outline the design

methodology implemented

LMS File Exchange

User Manual Clearly outline how the client can

use CSC’s product

LMS File Exchange & Github

Testing Documents Reflect the limitations of the

design

LMS File Exchange

Cloud Database Remote storage unit for the WSN Amazon Web Services

Web Application Medium for the client to view

data directions

Amazon Web Services

Codes Functional codes to reduce the

power consumption in the WSN

GitHub

Detailed Pinout Description &

Elimination

Ensure that a pin is not

improperly terminated

Final Report Appendix

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 92

10 System Cost
The WSN comprises of hardware, software and human resource costs [11]. The hardware cost solely consists of the

interposer PCB fabrication used to attach the Dusty to the duinoPRO. The software costs are the Asian-pacific

marginal provisioned throughput rates used in data transactions. The pricing of AWS resources is based on the

frequency and volume of data transactions. Therefore, the cloud-infrastructure costs have a large variability

depending on the client’s project size. In utilising Amazon DynamoDB, the marginal costs for the Asia Pacific

region in Australia Dollars are tabulated in Table 32 along with the hardware and engineering design costs. As for

this project, the cost of engineering design is found to be $89,820 where this cost varies according to the outputs and

relevant activities carried out by CSC. The timesheet of CSC represents activities carried out by CSC for this project

and it can be found in Appendix C.

Table 32: System Cost

 Vendor or

Service

Provider

Type of service Details Cost

Hardware EasyEDA PCB Fabrication Fabricating PCB with dimension of 29.27 x

28.54mm, castellated mounting holes across

the edge of the board, 2 layers board with

thickness of 1.6mm and 1oz of copper.

$33.81

Software AWS

DynamoDB

Provisioned

throughput cloud

database storage

Write capacity unit $0.00074/hr

Read capacity unit $0.000148/hr

Human

Resources

CSC Engineering design The engineering costs pertaining to the

development of the WSN

$120/hr

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 93

11 Conclusion
One of the greatest challenges in designing a wireless sensor network is the management of power consumption of

the devices in the network. Nodes in a wireless sensor network are often battery powered and placed in remote

locations and for these reasons energy usage must be kept to a minimum. Cloud Seven Consultants were contracted

by ATAMO to investigate the power management of sensor nodes within a wireless sensor network. ATAMO also

specified the use of their duinoPRO development platform and the use of Linear Technologies SmartMeshIP

communication protocol. CSC demarcated this task into three functional blocks. The first of these was the hardware

which involved the design of a printed circuit board to interface the dusty networking module to the duinoPRO

board. The hardware design also involved the setup of the serial communication between the duinoPRO and the

dusty module. The second component of the design was the embedded application responsible for completing all the

tasks necessary for the duinoPRO to act as the sensor host. This included tasks such as sampling from sensors,

joining the network, sending data, and the management of states (including sleep). The last part of the design was

the design of a cloud database and web application to visualise the incoming data from the wireless sensor network.

A gateway was also designed to act as the interface between the local WSN and the cloud database. Cloud Seven

Consultants successfully produced designs for these components and in many cases, have completed successful

testing to illustrate a proof of concept. Due to the tight time constraints of the project some aspects of the system

design remain untested however CSC has produced plans for the ATAMO should they wish to implement the design

in the future.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 94

12 References
[1] G. Levine. (2017). Arduino [Image]. Available: https://visualhunt.com/photo/126201/.].

[2] National Instruments. (2016). What is a Wireless Sensor Network? Available: http://www.ni.com/white-

paper/7142/en/. [Accessed: 25/10/2017].

[3] R. A. Abd-Alhameed, D. Zhou, C. H. See, Y. F. Hu, and K. V. Horoshenkov. (2008). Measure The Range

Of Sensor Networks. Available: http://www.mwrf.com/test-and-measurement/measure-range-sensor-

networks. [Accessed: 25/10/2017].

[4] A. Sinha and A. Chandrakasan, "Dynamic Power Management in Wireless Sensor Networks," IEEE, vol.

18, no. 2, pp. 62-74, 2001. Available: http://ieeexplore.ieee.org/abstract/document/914626/

[5] Linear Technology. (2017). Smart Mesh IP. Available: http://www.linear.com/products/SmartMesh_IP.

[Accessed: Aug. 2, 2017].

[6] M. Yen, "Wireless sensor network monitors structural data and environmental contaminants," (in English),

Materials Performance, Article vol. 47, no. 3, pp. 19-20, Mar 2008. Available: <Go to

ISI>://WOS:000253665300005

[7] Y. Pang, G. Lodewijks, and Bindt, "Machinery maintenance prediction using pattern recognition of

condition monitoring data," (in English), 8th International Conference on Condition Monitoring and

Machinery Failure Prevention Technologies 2011, Vols 1 and 2, Proceedings Paper pp. 772-781, 2011.

Available: <Go to ISI>://WOS:000399622600078

[8] K. Ellis, S. R. Mounce, B. Ryan, M. R. Templeton, and C. A. Biggs, "Use of on-line water quality

monitoring data to predict bacteriological failures," (in English), 12th International Conference on

Computing and Control for the Water Industry, Ccwi2013, Proceedings Paper vol. 70, pp. 612-621, 2014.

doi:10.1016/j.proeng.2014.02.067. Available: <Go to ISI>://WOS:000341500600067

[9] A. Ta, "ELEC5552 Team 14 Minutes 170810 Week 2," 2017, Available: ELEC5552 LMS Team 14 File

Exchange.

[10] M. Callaghan, "ELEC5552 Technical Queries 1-6 Week 3 20170817," 2017, Available: ELEC5552 LMS

Team 14 File Exchange.

[11] P. Bouvy, "ELEC5552 Team 14 Minutes 170824 Week 4.2," 2017, Available: ELEC5552 LMS Team 14

File Exchange.

[12] ATAMO, "Close the gap with duinoPRO," n.d., Available: http://www.atamo.com.au/images/duinoPRO-

ClosingtheGap-170109.pdf. [Accessed: Aug. 10, 2017].

[13] M. Callaghan, "ELEC5552 Technical Queries 7-8 Week 6 20170906," 2017, Available: ELEC5552 LMS

Team 14 File Exchange.

[14] K. Clifton, "duinoPRO UNO Baseboard 3x3," 2016.

[15] M. Callaghan, "Email from Mark Callaghan on 7 August 2017," 2017, Available: ELEC5552 LMS Team

14 File Exchange.

[16] Linear Technology, "Dust Networks: Eterna Integration Guide," 2015, Available:

https://cds.linear.com/docs/en/user-guide/Eterna_Integration_Guide.pdf. [Accessed: Oct. 25, 2017].

[17] Linear Technology, "Eterna Serial Programmer Guide," 2016, Available:

https://cds.linear.com/docs/en/software-and-simulation/Eterna_Serial_Programmer_Guide.pdf. [Accessed:

Oct. 25, 2017].

[18] Linear Technology. (2017). LTC5800-IPM - SmartMesh IP Wireless 802.15.4e System-on-Chip [Online].

Available: http://www.linear.com/product/LTC5800-IPM.].

[19] Atmel, "ATmega328/P Datasheet," 2016, Available: http://www.atmel.com/Images/Atmel-42735-8-bit-

AVR-Microcontroller-ATmega328-328P_Datasheet.pdf. [Accessed: Aug. 22, 2017].

[20] Linear Technology, "SmartMesh IP User's Guide," 2016, Available: http://cds.linear.com/docs/en/user-

guide/SmartMesh_IP_User_s_Guide.pdf.

[21] Linear Technology, "SmartMesh IP Mote Serial API Guide," Online 2016, Available:

http://cds.linear.com/docs/en/design-note/SmartMesh_IP_Mote_Serial_API_Guide.pdf.

[22] ATAMO, "Getting Started Guide - duinoPRO UNO," 2016.

[23] J. Simon. (2016). Port to Your Hardware. Available:

https://visualhunt.com/photo/126201/
http://www.ni.com/white-paper/7142/en/
http://www.ni.com/white-paper/7142/en/
http://www.mwrf.com/test-and-measurement/measure-range-sensor-networks
http://www.mwrf.com/test-and-measurement/measure-range-sensor-networks
http://ieeexplore.ieee.org/abstract/document/914626/
http://www.linear.com/products/SmartMesh_IP
http://www.atamo.com.au/images/duinoPRO-ClosingtheGap-170109.pdf
http://www.atamo.com.au/images/duinoPRO-ClosingtheGap-170109.pdf
https://cds.linear.com/docs/en/user-guide/Eterna_Integration_Guide.pdf
https://cds.linear.com/docs/en/software-and-simulation/Eterna_Serial_Programmer_Guide.pdf
http://www.linear.com/product/LTC5800-IPM
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://cds.linear.com/docs/en/user-guide/SmartMesh_IP_User_s_Guide.pdf
http://cds.linear.com/docs/en/user-guide/SmartMesh_IP_User_s_Guide.pdf
http://cds.linear.com/docs/en/design-note/SmartMesh_IP_Mote_Serial_API_Guide.pdf

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 95

https://dustcloud.atlassian.net/wiki/spaces/QSL/pages/80609405/Port+to+Your+Hardware. [Accessed: Oct.

16, 2017].

[24] STMicroelectronics, "LSM303D - Ultra-compact high-performance eCompass module: 3D accelerometer

and 3D magnetometer," 2013, Available: http://www.st.com/en/mems-and-sensors/lsm303dlhc.html.

[Accessed: Sept. 3, 2017].

[25] K. Clifton. (2017). duinoPRO firmware libraries [Online]. Available:

https://github.com/duinoPRO/firmware. [Accessed: Sept. 27, 2017].

[26] ATAMO, "duinoPRO Accelerometer / Magnetometer Module," 2015.

[27] J. Phan. (2017). Sensor Host Configurations. Available: https://kjph.github.io/c7c-atamo-

dusty/technical/arch/sh_configurations.html. [Accessed: Sept. 13, 2017].

[28] Linear Technologies. (2017). DC2274A-A - SmartMesh IP USB Network Manager, 100 mote capacity.

Available: http://www.linear.com/solutions/5744.].

[29] Linear Technology, SmartMesh IP Embedded Manager API Guide, 2016. [Online]. Available:

http://cds.linear.com/docs/en/design-note/SmartMesh_IP_Embedded_Manager_API_Guide.pdf.

[30] T. Watteyne. (2014). SmartMesh SDK. Available:

https://dustcloud.atlassian.net/wiki/spaces/SMSDK/overview.].

[31] R. Lea, "Node-RED: Lecture 3- Basic Nodes and Flows ", 2016. [Online]. Available:

http://noderedguide.com/tag/mqtt/.

[32] T. Watteyne. (2017). SmartMesh IP and Node-RED, revisited. Available:

https://dustcloud.atlassian.net/wiki/spaces/ALLDOC/pages/110311810/SmartMesh+IP+and+Node-

RED+revisited.].

[33] S. Male, "Project 14: Energy Management in Low Power Wireless Sensor Networks," 2017, Available:

ELEC5552 LMS Team 14 File Exchange.

[34] J. Sacino, "ELEC5552 Team 14 Minutes 170928 Week 9.2 V3 [Design Review]," 2017, Available:

ELEC5552 LMS Team 14 File Exchange.

[35] Amazon, "Amazon DynamoDB Developer Guide," 2017. [Accessed: 2017, Aug.20].

[36] International Business Machines, "How Watson Works," 2014. [Accessed: Sept. 10, 2017].

[37] International Business Machines. (2017). Internet of Things Platform Starter. Available:

https://console.bluemix.net/catalog/starters/internet-of-things-platform-starter?env_id=ibm:yp:us-south.

[Accessed: Sep.1, 2017].

[38] Amazon. (2017). Amazon DynamoDB Pricing. Available: https://aws.amazon.com/dynamodb/pricing/.

[Accessed: Sep.1, 2017].

[39] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, "An IoT-Oriented Data Storage Framework in Cloud

Computing Platform," IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, vol. 10, no. 2, pp. 1443-

1452, 2014.

[40] V. Varga, K. T. Janosi-Rancz, and B. Kalman, "Conceptual Design of Document NoSQL Database with

Formal Concept Analysis," Acta Polytechnica Hungarica, vol. 13, no. 2, pp. 229-248, 2016.

[41] D. G. Chandra, "BASE analysis of NoSQL database," Future Generation Computer Systems, no. 52, p. 8,

2015.

[42] G. Balasubramanian. (2017). Choosing the Right DynamoDB Partition Key. Available:

https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/. [Accessed: Oct. 15,

2017].

[43] A. Tsalgatidou and T. Pilioura, "An overview of standards and related technology in Web Services,"

Distributed and Parallel Databases, vol. 12, pp. 135-162, 2002. doi:10.1023/A:1016599017660.

[44] A. Holovaty and J. Kaplan-Moss, "The Definitive Guide to Django," Estados Unidos: Editorial Apress, vol.

26, 2009. doi:10.1093/intimm/dxu027.

[45] M. Bächle and P. Kirchberg, "Ruby on rails," IEEE Software, vol. 24, pp. 105-108, 2007.

doi:10.1109/MS.2007.176.

[46] K. Schutt and O. Balci, "Cloud software development platforms: A comparative overview," in IEEE/ACIS

14th International Conference on Software Engineering Research, Management and Applications, SERA,

2016, pp. 3-13. doi:10.1109/SERA.2016.7516122.

[47] Djangoproject. (2017). Meet Django [Online]. Available: https://www.djangoproject.com/. [Accessed:

Sept. 14, 2017].

https://dustcloud.atlassian.net/wiki/spaces/QSL/pages/80609405/Port+to+Your+Hardware
http://www.st.com/en/mems-and-sensors/lsm303dlhc.html
https://github.com/duinoPRO/firmware
https://kjph.github.io/c7c-atamo-dusty/technical/arch/sh_configurations.html
https://kjph.github.io/c7c-atamo-dusty/technical/arch/sh_configurations.html
http://www.linear.com/solutions/5744
http://cds.linear.com/docs/en/design-note/SmartMesh_IP_Embedded_Manager_API_Guide.pdf
https://dustcloud.atlassian.net/wiki/spaces/SMSDK/overview
http://noderedguide.com/tag/mqtt/
https://dustcloud.atlassian.net/wiki/spaces/ALLDOC/pages/110311810/SmartMesh+IP+and+Node-RED+revisited
https://dustcloud.atlassian.net/wiki/spaces/ALLDOC/pages/110311810/SmartMesh+IP+and+Node-RED+revisited
https://console.bluemix.net/catalog/starters/internet-of-things-platform-starter?env_id=ibm:yp:us-south
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://www.djangoproject.com/

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 96

[48] Amazon Web Services. (2014). Getting Started with AWS: Deploying a Web Application. Available:

http://docs.aws.amazon.com/gettingstarted/latest/deploy/awsgsg-deploy.pdf.].

[49] Amazon Web Services. (2016). AWS Elastic Beanstalk: Developer Guide. Available:

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/awseb-dg.pdf.].

[50] W. O. Galitz, The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and

Techniques. John Wiley & Sons, Inc., 2007.

[51] M. Gunderloy, Developer to Designer: GUI Design for the Busy Developer. Wiley, 2006.

[52] L. Green, Technoculture: From Alphabet to Cybersex. ECU Publications, 2002.

[53] J. Jo, Y. Kim, and S. Lee, "Mindmetrics: Identifying users without their login IDs," in 2014 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 2121-2126: IEEE.

doi:10.1109/SMC.2014.6974235.

[54] J. A. Forbes and E. R. Baker, "Improving Hardware, Software, and Training Deployment Processes," in

IEEE International Conference on Software Maintenance, 2003, pp. 377-380: IEEE Comput. Soc.

doi:10.1109/ICSM.2003.1235446.

[55] X. Li and Z. Cai, "Elastic Resource Provisioning for Cloud Workflow Applications," IEEE Transactions on

Automation Science and Engineering, vol. 14, pp. 1-16, 2015. doi:10.1109/TASE.2015.2500574.

[56] Amazon Web Services. (2010). AWS CloudFormation User Guide. Available:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-ug.pdf.].

[57] Cloud Seven Consulting, "ELEC5552 Team 14 Testing Document," 2017, Available: LMS File Exchange.

[58] GitHub. (2017). How Developers Work. Available: https://nodered.org/about/. [Accessed: Sept. 14, 2017].

[59] Autodesk. (2017). PCB Layout Software for Every Engineer. Available:

https://www.autodesk.com/products/eagle/features. [Accessed: Sept. 14, 2017].

[60] Easy EDA. (2017). An Easier EDA Experience. Available: https://easyeda.com. [Accessed: Sept. 14, 2017].

[61] Linear Technology. (2017). SmartMesh IP USB Network Manager. Available:

http://www.linear.com/solutions/5744. [Accessed: Sept. 14, 2017].

[62] Amazon. (2017). Cloud Computing with Amazon Web Services. Available:

http://www.linear.com/solutions/5744. [Accessed: Sept. 14, 2017].

[63] Amazon. (2017). Amazon DynamoDB Documentation. Available:

https://aws.amazon.com/documentation/dynamodb/. [Accessed: Sept. 14, 2017].

[64] Amazon. (2017). What Is AWS Elastic Beanstalk? Available: https://nodered.org/about/. [Accessed: Sept.

16, 2017].

[65] S. Hartley, Professional Project Management: Bridging Complexity, Uncertainty and Change, 2 ed. TUP

Textbooks, 2016.

http://docs.aws.amazon.com/gettingstarted/latest/deploy/awsgsg-deploy.pdf
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/awseb-dg.pdf
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-ug.pdf
https://nodered.org/about/
https://www.autodesk.com/products/eagle/features
https://easyeda.com/
http://www.linear.com/solutions/5744
http://www.linear.com/solutions/5744
https://aws.amazon.com/documentation/dynamodb/
https://nodered.org/about/

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 97

13 Appendices

13.1 Appendix A – Yet to be added

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 98

13.2 Appendix B – IoTeam Dusty Net List

 Pin

I/O Pull Active Description Net Justification

AI_0 15 I - - Analog Inputs.

These pins are multiplexed to the analog input

chain. The analog input chain, as shown in Figure

12, is software-configurable

and includes a variable-gain amplifier, an offset-

DAC for adjusting input range, and a 10b ADC.

Valid input range is between 0 to 1.8V. Analog

inputs can be sampled as described in the On-

Chip Software Development Kit (OnChip SDK).

3V3 via 10kΩ Input voltage is stabilized and

influence of noise caused by power

supply is decreased. Resistor is

required to place as close as possible

to the pin. If the distance between

resistor and pin are too far apart, the

long wiring acts adversely as an

antenna and may result unwanted

EMI.

AI_1 16 I - -

AI_3 17 I - -

AI_2 18 I - - .

RESETn 22 I Up LOW RESETN

RESETn and FLASH_P_ENn asserted during in-

circuit programming.

The asynchronous reset signal is internally pulled

up. Resetting Eterna will result in the ARM Cortex

M3 rebooting and loss of network connectivity.

Use of this signal for resetting Eterna is not

recommended except during power-on and in-

circuit programming.

Switch

between 3V3

via 10kΩ and

GND

Held high to prevent assertion (low)

TDI 23 I UP - JTAG Test Data In

JTAG Test Data Out

JTAG Test Mode Select

JTAG Test Clock

JTAG Port Supporting Software Debug and

Boundary Scan. An IEEE Std 1149.1b-1994

compliant Boundary Scan Definition Language

(BDSL) file for the WR QFN72 package can be

found

N/C Internally pulled up

TDO 24 O - - N/C Outputs do not required tie

TMS 25 I UP - N/C Internally pulled up

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 99

 Pin

I/O Pull Active Description Net Justification

TCK 26 I DOWN -

3V3 or GND Internally pulled down

DP4 27 I/O - - General Purpose Digital I/O (GPIO23) 3V3 via 10kΩ Input Mode: See AI_0

Output Mode: Disable in Flash and

left unconnected

DP3

TIMER8_EXT

33 I/O

I

-

-

-

-

General Purpose Digital I/O (GPIO22)

TIMER8_EXT (if programmed)

External input to 8-bit timer/counter

3V3 via 10kΩ Input Mode: See AI_0

Output Mode: Disable in Flash and

left unconnected

DP2

LPTIMER_EXT

34 I/O

I

-

-

-

-

General Purpose Digital I/O (GPIO21)

LPTIMER_EXT (if programmed)

External Input to Low Power Timer/Counter

3V3 via 10kΩ Input Mode: See AI_0

Output Mode: Disable in Flash and

left unconnected

SLEEPN

GPIO14

35 I

I/O

-

-

LOW

-

Deep Sleep.

The SLEEPn function is not currently supported in

software. The SLEEPn input must either be tied,

pulled or actively driven high to avoid excess

leakage.

General Purpose Digital I/O (if programmed)

3V3 via 10kΩ To prevent leakage as said in

description

DP0

SPIM_SS_2n

36 I/O

O

-

-

-

LOW

General Purpose Digital I/O (GPIO0)

SPI Master Slave Select 2 (if programmed)

3V3 via 10kΩ Input Mode: See AI_0

Output Mode: Disable in Flash and

left unconnected

UARTC0_TX 37 O - - CLI UART 0 Transmit

CLI UART 0 Receive

The CLI UART provides a mechanism for

monitoring, configuration and control of Eterna

during operation. For a complete description of the

supported commands see the SmartMesh IP Mote

CLI Guide.

Test Point 1 For development and

troubleshooting.

UARTC0_RX 38 I UP -

Test Point 2 For development and

troubleshooting.

SPIM_MISO

GPIO11

39 I

I/O

-

-

-

-

SPI Master (MISO) Master In Slave Out Port

General Purpose Digital I/O

N/C Disabled in Flash

IPCS_MISO 40 O - - SPI Flash Emulation (MISO) Master In Slave Out N/C Disabled in Flash

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 100

 Pin

I/O Pull Active Description Net Justification

TIMER16_OUT

GPIO6

O

I/O

-

-

-

-

Port

16-Bit Timer/Counter Match Output/PWM Output

General Purpose Digital I/O

SPIM_MOSI

GPIO10

41 O

I/O

-

-

-

-

SPI Master (MOSI) Master Out Slave In Port

General Purpose Digital I/O

N/C Disabled in Flash

IPCS_MOSI

TIMER16_EXT

GPIO6

42 I

I

I/O

-

-

-

-

-

-

SPI Flash Emulation (MOSI) Master Out Slave

In Port

External Input to 16-bit Timer/Counter

General Purpose Digital I/O

N/C Disabled in Flash

SPIM_SCK

GPIO9

43 O

I/O

-

-

-

-

SPI Master (SCK) Serial Clock Port

General Purpose Digital I/O

N/C Disabled in Flash

IPCS_SCK

TIMER8_EXT

GPIO4

44 I

I

I/O

-

-

-

-

-

-

SPI Flash Emulation (SCK) Serial Clock Port

External Input to 8-Bit Timer/Counter

General Purpose Digital I/O

N/C Disabled in Flash

IPCS_SSN

LPTIMER_EXT

GPIO3

45 I

I

I/O

-

-

-

LOW

-

-

SPI Flash Emulation Slave Select, Active Low

External Input to Low Power Timer/Counter

General Purpose Digital I/O

3V3 To prevent SPI Flash emulation;

precautionary measure, this should

already be disabled in Flash.

Otherwise pull or tie to high.

SPIM_SS_1N

GPIO 13

46 O

I/O

- LOW SPI Master Slave Select 1, Active Low

General Purpose Digital I/O

3V3 This should already be disabled in

Flash. Otherwise pull or tie high.

SPIM_SS_0N

GPIO 12

47 O

I/O

- LOW SPI Master Slave Select 0, Active Low

General Purpose Digital I/O

3V3 This should already be disabled in

Flash. Otherwise pull or tie high.

DP1

TIMER16_EXT

48 I/O - - General Purpose Digital I/O

External Input to 16-Bit Timer/Counter

3V3 via 10kΩ Input Mode: See AI_0

Output Mode: Disable in Flash and

left unconnected

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 101

 Pin

I/O Pull Active Description Net Justification

PWM0

TIMER16_OUT

GPIO16

49 O

O

I/O

-

-

-

-

-

-

Pulse Width Modulator 0

16-Bit Timer/Counter Match Output/PWM Output

General Purpose Digital I/O

N/C Pin is currently not supported in

software.

SPIS_MISO

UARTC1_TX

1_WIRE

50 O

O

I/O

-

-

-

-

-

-

SPI Slave (MISO) Master In Slave Out Port

CLI UART 1 Transmit

1 Wire Master

N/C See PWM0

SPIS_MOSI

UARTC1_RX

GPIO26

51 I

I

I/O

-

-

-

-

-

-

SPI Slave (MOSI) Master Out Slave In Port

CLI UART 1 Receive

General Purpose Digital I/O

N/C See PWM0

SPIS_SCK

SCL

52 I

I/O

-

-

-

-

SPI Slave (SCK) Serial Clock Port

I2C Serial Clock

N/C See PWM0

SPIS_SSN

SDA

53 I

I/O

-

-

LOW

-

SPI Slave Select, Active Low

I2C Serial Data

3V3 See PWM0

FLASH_P_ENN 55 I UP LOW Flash Program Enable, Active Low 3V3 To prevent Flash programming

UART_RX_RTSN 66 I - LOW UART Receive (RTS) Request to Send, Active

Low.

This input is always enabled and must be driven

or pulled to

a valid state to avoid leakage.

The API UART interface includes bi-directional

wake up and flow control. Unused input signals

must be driven or pulled to their inactive state.

In Mode 2: Transfers are initiated by Eterna

asserting UART_TX_RTSn. The companion

processor responds by asserting

UART_TX_CTSn when ready to receive data.

After detecting the falling edge of

UART_TX_CTSn Eterna sends the entire packet.

Following the transmission of the final byte in the

packet Eterna negates UART_TX_RTSn and

waits until the negation of UART_TX_CTSn before

asserting UART_TX_RTSn again. The companion

processor may negate UART_TX_CTSn any time

after the first byte is transferred provided the time

DP::M5P1 DP Mode 2

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 102

 Pin

I/O Pull Active Description Net Justification

out from UART_TX_RTSn to UART_TX_CTSn,

tEND_TX_RTS to TX_CTS, is met.

In Mode 4: unless the companion processor is

always ready to receive a packet, the companion

processor must negate UART_TX_CTSn prior to

the end of the current packet. Failure to negate

UART_TX_CTSn prior to the end of a packet may

result in back to back packets. Third, the

companion processor must wait at least

𝑡𝑅𝑋−𝐼𝑁𝑇𝐸𝑅𝑃𝐴𝐶𝐾𝐸𝑇 between transmitting packets on

UART_RX. See the UART AC Characteristics

section for complete timing specifications.

In Mode 4: Transfers are initiated by Eterna

asserting UART_TX_RTSn. The UART_TX_CTSn

signal may be actively driven by the companion

processor when ready to receive a packet or

UART_TX_CTSn may be tied low if the

companion processor is always ready to receive a

packet. After detecting a logic ‘0’ on

UART_TX_CTSn Eterna sends the entire packet.

Following the transmission of the final byte in the

packet Eterna negates UART_TX_RTSn and

waits for tTX_INTERPACKET, defined in the

UART AC Characteristics section, before

asserting UART_TX_RTSn again.

UART_RX_CTSN 67 O - LOW UART Receive (CTS) Clear to Send

DP::M1P1 Not M4 due to M4-2 using the same

PC registers and may effect the

interrupts

UART_RX 68 I - - UART Receive

DP::TX API UART will be used with the DP

acting as master

TX and RX lines must ‘cross’

UART_TX_RTSN 69 O - LOW UART Transmit (RTS) Request to Send, Active DP:: DP will be using Mode 4.

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 103

 Pin

I/O Pull Active Description Net Justification

Low M7.GPIO1/INT

| LED

Flow control is mandatory to ensure

bi-directional transmission. Must be

on Interrupt line so that it can be

processed in time

The DP CTS will notify the Dn when it

is ready to accept data.

LED to indicate when interrupt is

raised

UART_TX_CTSN 70 I - LOW UART Transmit (CTS) Clear to Send, Active

Low

DP::

M6.GPIO1/INT

| LED

Cannot use other M7 pins as we do

not yet have control over the

DuinoPro library

UART_TX 71 O - - UART Transmit

DP::RX API UART will be used with the DP

acting as master

TX and RX lines must ‘cross’

TIMEn 72 I - LOW TIME

Strobing the TIMEn input is the most accurate

method to acquire the network time maintained by

Eterna. Eterna latches the network timestamp with

sub-microsecond resolution on the rising edge of

the TIMEn signal and produces a packet on the

API serial port containing the timing information.

This input is always enabled and must be driven

or pulled to

a valid state to avoid leakage.

3V3 This pin can be neglected as timing

information can be determined via

API UART connection.

RADIO_INHIBIT 1 I - LOW Radio Inhibit

This input is always enabled and must be driven

or pulled to

a valid state to avoid leakage.

The RADIO_INHIBIT input enables an external

controller to temporarily disable the radio software

drivers (for example, to take a sensor reading that

GND See description

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 104

 Pin

I/O Pull Active Description Net Justification

is susceptible to radio interference). When

RADIO_INHIBIT is asserted the software radio

drivers will disallow radio operations including

clear channel assessment, packet transmits, or

packet receipts. If the current timeslot is active

when RADIO_INHIBIT is asserted the radio will be

diabled after the present operation completes.

LNA_EN

GPIO18

11 O

I/O

-

-

-

-

External LNA Enable

Control signals generated by the autonomous

MAC supporting the integration of an external

LNA/PA. See the Eterna Extended Range

Reference Design for implementation details.

General Purpose Digital I/O

N/C Disabled in Flash

RADIO_TXN

GPIO19

13 O

I/O

-

-

LOW

-

Radio TX Active (External PA Enable/Switch

Control)

Control signals generated by the autonomous

MAC supporting the integration of an external

LNA/PA. See the Eterna Extended Range

Reference Design for implementation details.

General Purpose Digital I/O

3v3 This should already be disabled in

Flash. Otherwise pull or tie high.

RADIO_TX

GPIO18

12 O

I/O

-

-

-

-

Radio TX Active (External PA Enable/Switch

Control)

Control signals generated by the autonomous

MAC supporting the integration of an external

LNA/PA. See the Eterna Extended Range

Reference Design for implementation details.

General Purpose Digital I/O

N/C Disabled in Flash

 Final Design

Energy Management in Low Power Wireless Sensor Networks

 | 105

13.3 Appendix C – Timesheet of CSC

Field Total Hours

Group 36:35:00

Peter 75:30:00

Aaron 113:35:00

Jamie 139:07:00

Matthew 62:45:00

Yung 78:55:00

Jake 151:59:00

Andy 90:00:00

Net Hours

Total 748:26:00 hours

 31:11:05 Days

